K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2022

Bất đẳng thức cần chứng minh tương đương với:

\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\)

Ta áp dụng bất đẳng thức Cô si dạng \(2\sqrt{xy}\le x+y\) cho các căn thức ở mẫu, khi đó ta được:

\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\ge\) với biểu thức

\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\)

Khi đó ta cần chứng minh: 

\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\ge\dfrac{3}{4}\)

Đặt: \(\left\{{}\begin{matrix}x=2a+3b+3c\\y=3a+2b+3c\\z=3a+3b+2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a=\dfrac{1}{4}\left(3y+3z-5x\right)\\2b=\dfrac{1}{4}\left(3z+3x-5y\right)\\2c=\dfrac{1}{4}\left(3x+3y-5z\right)\end{matrix}\right.\)

Khi đó đẳng thức trên được viết lại thành:

\(\dfrac{3y+3z-5x}{4x}+\dfrac{3z+3x-5y}{4y}+\dfrac{3x+3y-5z}{4z}\ge\dfrac{3}{4}\)

Hay: \(3\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\right)-15\ge3\)

Bất đẳng thức cuối cùng luôn đúng theo bất đẳng thức Cô si.

Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

16 tháng 2 2022

Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\)

Khi đó bđt đã tro chở thành:

\(\dfrac{yz}{x^2+3yz}+\dfrac{zx}{y^2+3zx}+\dfrac{xy}{z^2+3xy}\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}-\dfrac{yz}{x^2+3yz}+\dfrac{1}{3}-\dfrac{zx}{y^2+3zx}+\dfrac{1}{3}-\dfrac{xy}{z^2+3xy}\ge1-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{x^2}{x^2+3yz}+\dfrac{y^2}{y^2+3zx}+\dfrac{z^2}{z^2+3xy}\ge\dfrac{3}{4}\) (đpcm)

 

21 tháng 2 2022

`Answer:`

`1.`

Xét `f(x)=0`

`<=>(x+3)(x^2+5x-6)=0`

`<=>x+3=0` hoặc `x^2+5x-6=0`

`<=>x=-3` hoặc `(x-1)(x+6)=0`

`<=>x=-3` hoặc `x=1` hoặc `x=-6`

`f(x)=(x+3)(x-1)(x+6)`

undefined

Vậy ta có:

`f(x)>0<=>x\in(-6;-3)∪(1;+oo)`

`f(x)<0<=>x\in(-oo;-6)∪(-3;1)`

`f(x)=0<=>x\in{-6;-3;1}`

`2.`

undefined

`=>S=(-2;-6)∪[-2;1)∪(1;3]`

15 tháng 2 2022

Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức, chú ý đến dấu đẳng thức xẩy ra thì ta được:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ca}\)sẽ lớn hơn hoặc bằng:

\(\frac{16}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\ge\frac{16}{\left(a+b+c\right)^2}+\frac{1}{3}\left(a+b+c\right)^2=12\)

\(\Rightarrow\)Ta cần chứng minh: \(\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge18\)

Để ý tiếp bất đẳng thức Bunhiacopxki ta được:

\(\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge\frac{6}{ab+bc+ca}\ge\frac{6}{\frac{1}{3}\left(a+b+c\right)^2}=18\)

Do đó ta có bất đẳng thức:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

Vậy bất đẳng thức được chứng minh.

21 tháng 2 2022

`Answer:`

`a.` Có `A(3;1),B(4;2)`

\(\Rightarrow\hept{\begin{cases}\overrightarrow{OA}=\left(3;1\right)\\\overrightarrow{BA}=\left(x_A-x_B,y_A-y_B\right)=\left(-1;-1\right)\end{cases}}\)

`b.` Có \(\overrightarrow{OB}=\left(4;2\right)\)

\(\Rightarrow\overrightarrow{OA}.\overrightarrow{OB}=3.4+1.2=14\ne0\)

Vậy `OA` không vuông góc `OB`

15 tháng 2 2022

=1e+22

13 tháng 2 2022

x∈[2.88769272473254