K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

TL:

= 1

_HT_

Đề thi đánh giá năng lực

15 tháng 10 2021

\(\text{2000000000×35468761÷245+334345-1289}=\text{2.8954091e+14}\)

~ Học tốt bạn ~ 

15 tháng 10 2021

2.8954091e+14 nha  

1234567890 + 123456789012345678901234567890 = 123456789012345678902469135780

14 tháng 10 2021

1234567890   +   123456789012345678901234567890 

=  123456789012345678902469135780

I. Khái niệm cực đại, cực tiểuLuyện tập   Hàm số y=-x^2+1y=−x2+1 có bảng biến thiên và đồ thị như hình dưới đây.Hàm số có đạo hàm y'=0y′=0 tại x=x=.Trên khoảng \left(-\infty;+\infty\right)(−∞;+∞) hàm số đạt giá trị lớn nhất bằng  tại x=x=.Kiểm tra Định nghĩa: Hàm số y=f\left(x\right)y=f(x) xác định và liên tục trên khoảng \left(a;b\right)(a;b) (có thể a là -\infty−∞, b là +\infty+∞ )...
Đọc tiếp
I. Khái niệm cực đại, cực tiểuLuyện tập   

Hàm số y=-x^2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0 tại x=.

Trên khoảng \left(-\infty;+\infty\right) hàm số đạt giá trị lớn nhất bằng  tại x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right) xác định và liên tục trên khoảng \left(a;b\right) (có thể a là -\infty, b là +\infty ) và điểm x_0\in\left(a;b\right).

a) Nếu tồn tại số h>0 sao cho f\left(x\right)< f\left(x_0\right) với mọi x\in\left(x_0-h;x_0+h\right) và x\ne x_0 thì ta nói hàm số f\left(x\right) đạt cực đại tại x_0.

b) Nếu tồn tại số h>0 sao cho f\left(x\right)>f\left(x_0\right) với mọi x\in\left(x_0-h;x_0+h\right) và x\ne x_0 thì ta nói hàm số f\left(x\right) đạt cực tiểu tại x_0.

Chú ý:

1) Nếu hàm số f\left(x\right) đạt cực đại (cực tiểu) tại x_0 thì x_0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ} (f_{CT}), còn điểm M\left(x_0;f\left(x_0\right)\right)  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right) có đạo hàm trên \left(a;b\right) và đạt cực đại hoặc cực tiểu tại x_0 thì f'\left(x_0\right)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right) liên tục trên khoảng K=\left(x_0-h;x_0+h\right) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}, với h>0.a) Nếu f'\left(x\right)>0 trên khoảng \left(x_0-h;x_0\right) và f'\left(x\right)< 0 trên khoảng \left(x_0;x_0+h\right) thì x_0 là một điểm cực đại của hàm số f\left(x\right).

b)  Nếu f'\left(x\right)< 0 trên khoảng \left(x_0-h;x_0\right) và f'\left(x\right)>0 trên khoảng \left(x_0;x_0+h\right) thì x_0 là một điểm cực tiểu của hàm số f\left(x\right).

    

 

Luyện tập   

Tìm các điểm cực trị của hàm số y=-x^2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}.

f'\left(x\right)=-2x ; f'\left(x\right)=0\Leftrightarrow x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0.Hàm số đạt cực đại bằng 0 tại x=1.Hàm số không có điểm cực trị.Điểm \left(0;1\right) là điểm cực trị của đồ thị hàm số.Kiểm traIII. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right) . Tìm các điểm tại đó f'\left(x\right) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập   

Cho hàm số y=-x\left(x^2-3\right). Khẳng định nào dưới đây đúng?

AHàm số đạt cực đại tại x_1=0 và đạt cực tiểu tại x_2=\sqrt{3}.BPhương trình y'=0 có 2 nghiệm là x_1=0 và x_2=\sqrt{3}.CHàm số có 3 cực trị.DHàm số đạt cực tiểu tại x_1=-1 và đạt cực đại tại x_2=1.Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right), với h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0 thì x_0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0 thì x_0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right). Giải phương trình f'\left(x\right)=0 và kí hiệu x_i (i=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right) và f''\left(x_i\right).

4. Dựa vào dấu của f''\left(x_i\right) suy ra tính chất cực trị của điểm x_i.

 

Luyện tập   

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.

f''\left(x\right)=3x^2-4.

Với x_1=0 ta có f''\left(0\right) <> 0 \Rightarrow x_0=0 là điểm cực tiểucực đại.

Với x_2=-2 ta có f''\left(-2\right) <> 0 \Rightarrow x_2=-2 là điểm cực tiểucực đại.

Kiểm traI. Khái niệm cực đại, cực tiểuLuyện tập   

Hàm số y=-x^2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0 tại x=.

Trên khoảng \left(-\infty;+\infty\right) hàm số đạt giá trị lớn nhất bằng  tại x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right) xác định và liên tục trên khoảng \left(a;b\right) (có thể a là -\infty, b là +\infty ) và điểm x_0\in\left(a;b\right).

a) Nếu tồn tại số h>0 sao cho f\left(x\right)< f\left(x_0\right) với mọi x\in\left(x_0-h;x_0+h\right) và x\ne x_0 thì ta nói hàm số f\left(x\right) đạt cực đại tại x_0.

b) Nếu tồn tại số h>0 sao cho f\left(x\right)>f\left(x_0\right) với mọi x\in\left(x_0-h;x_0+h\right) và x\ne x_0 thì ta nói hàm số f\left(x\right) đạt cực tiểu tại x_0.

Chú ý:

1) Nếu hàm số f\left(x\right) đạt cực đại (cực tiểu) tại x_0 thì x_0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ} (f_{CT}), còn điểm M\left(x_0;f\left(x_0\right)\right)  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right) có đạo hàm trên \left(a;b\right) và đạt cực đại hoặc cực tiểu tại x_0 thì f'\left(x_0\right)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right) liên tục trên khoảng K=\left(x_0-h;x_0+h\right) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}, với h>0.a) Nếu f'\left(x\right)>0 trên khoảng \left(x_0-h;x_0\right) và f'\left(x\right)< 0 trên khoảng \left(x_0;x_0+h\right) thì x_0 là một điểm cực đại của hàm số f\left(x\right).

b)  Nếu f'\left(x\right)< 0 trên khoảng \left(x_0-h;x_0\right) và f'\left(x\right)>0 trên khoảng \left(x_0;x_0+h\right) thì x_0 là một điểm cực tiểu của hàm số f\left(x\right).

    

 

Luyện tập   

Tìm các điểm cực trị của hàm số y=-x^2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}.

f'\left(x\right)=-2x ; f'\left(x\right)=0\Leftrightarrow x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0.Hàm số đạt cực đại bằng 0 tại x=1.Hàm số không có điểm cực trị.Điểm \left(0;1\right) là điểm cực trị của đồ thị hàm số.Kiểm traIII. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right) . Tìm các điểm tại đó f'\left(x\right) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập   

Cho hàm số y=-x\left(x^2-3\right). Khẳng định nào dưới đây đúng?

AHàm số đạt cực đại tại x_1=0 và đạt cực tiểu tại x_2=\sqrt{3}.BPhương trình y'=0 có 2 nghiệm là x_1=0 và x_2=\sqrt{3}.CHàm số có 3 cực trị.DHàm số đạt cực tiểu tại x_1=-1 và đạt cực đại tại x_2=1.Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right), với h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0 thì x_0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0 thì x_0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right). Giải phương trình f'\left(x\right)=0 và kí hiệu x_i (i=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right) và f''\left(x_i\right).

4. Dựa vào dấu của f''\left(x_i\right) suy ra tính chất cực trị của điểm x_i.

 

Luyện tập   

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.

f''\left(x\right)=3x^2-4.

Với x_1=0 ta có f''\left(0\right) <> 0 \Rightarrow x_0=0 là điểm cực tiểucực đại.

Với x_2=-2 ta có f''\left(-2\right) <> 0 \Rightarrow x_2=-2 là điểm cực tiểucực đại.

Kiểm traI. Khái niệm cực đại, cực tiểuLuyện tập   

Hàm số y=-x^2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0 tại x=.

Trên khoảng \left(-\infty;+\infty\right) hàm số đạt giá trị lớn nhất bằng  tại x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right) xác định và liên tục trên khoảng \left(a;b\right) (có thể a là -\infty, b là +\infty ) và điểm x_0\in\left(a;b\right).

a) Nếu tồn tại số h>0 sao cho f\left(x\right)< f\left(x_0\right) với mọi x\in\left(x_0-h;x_0+h\right) và x\ne x_0 thì ta nói hàm số f\left(x\right) đạt cực đại tại x_0.

b) Nếu tồn tại số h>0 sao cho f\left(x\right)>f\left(x_0\right) với mọi x\in\left(x_0-h;x_0+h\right) và x\ne x_0 thì ta nói hàm số f\left(x\right) đạt cực tiểu tại x_0.

Chú ý:

1) Nếu hàm số f\left(x\right) đạt cực đại (cực tiểu) tại x_0 thì x_0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ} (f_{CT}), còn điểm M\left(x_0;f\left(x_0\right)\right)  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right) có đạo hàm trên \left(a;b\right) và đạt cực đại hoặc cực tiểu tại x_0 thì f'\left(x_0\right)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right) liên tục trên khoảng K=\left(x_0-h;x_0+h\right) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}, với h>0.a) Nếu f'\left(x\right)>0 trên khoảng \left(x_0-h;x_0\right) và f'\left(x\right)< 0 trên khoảng \left(x_0;x_0+h\right) thì x_0 là một điểm cực đại của hàm số f\left(x\right).

b)  Nếu f'\left(x\right)< 0 trên khoảng \left(x_0-h;x_0\right) và f'\left(x\right)>0 trên khoảng \left(x_0;x_0+h\right) thì x_0 là một điểm cực tiểu của hàm số f\left(x\right).

    

 

Luyện tập   

Tìm các điểm cực trị của hàm số y=-x^2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}.

f'\left(x\right)=-2x ; f'\left(x\right)=0\Leftrightarrow x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0.Hàm số đạt cực đại bằng 0 tại x=1.Hàm số không có điểm cực trị.Điểm \left(0;1\right) là điểm cực trị của đồ thị hàm số.Kiểm traIII. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right) . Tìm các điểm tại đó f'\left(x\right) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập   

Cho hàm số y=-x\left(x^2-3\right). Khẳng định nào dưới đây đúng?

AHàm số đạt cực đại tại x_1=0 và đạt cực tiểu tại x_2=\sqrt{3}.BPhương trình y'=0 có 2 nghiệm là x_1=0 và x_2=\sqrt{3}.CHàm số có 3 cực trị.DHàm số đạt cực tiểu tại x_1=-1 và đạt cực đại tại x_2=1.Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right), với h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0 thì x_0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0 thì x_0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right). Giải phương trình f'\left(x\right)=0 và kí hiệu x_i (i=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right) và f''\left(x_i\right).

4. Dựa vào dấu của f''\left(x_i\right) suy ra tính chất cực trị của điểm x_i.

 

Luyện tập   

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.

f''\left(x\right)=3x^2-4.

Với x_1=0 ta có f''\left(0\right) <> 0 \Rightarrow x_0=0 là điểm cực tiểucực đại.

Với x_2=-2 ta có f''\left(-2\right) <> 0 \Rightarrow x_2=-2 là điểm cực tiểucực đại.

Kiểm traI. Khái niệm cực đại, cực tiểuLuyện tập   

Hàm số y=-x^2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0 tại x=.

Trên khoảng \left(-\infty;+\infty\right) hàm số đạt giá trị lớn nhất bằng  tại x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right) xác định và liên tục trên khoảng \left(a;b\right) (có thể a là -\infty, b là +\infty ) và điểm x_0\in\left(a;b\right).

a) Nếu tồn tại số h>0 sao cho f\left(x\right)< f\left(x_0\right) với mọi x\in\left(x_0-h;x_0+h\right) và x\ne x_0 thì ta nói hàm số f\left(x\right) đạt cực đại tại x_0.

b) Nếu tồn tại số h>0 sao cho f\left(x\right)>f\left(x_0\right) với mọi x\in\left(x_0-h;x_0+h\right) và x\ne x_0 thì ta nói hàm số f\left(x\right) đạt cực tiểu tại x_0.

Chú ý:

1) Nếu hàm số f\left(x\right) đạt cực đại (cực tiểu) tại x_0 thì x_0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ} (f_{CT}), còn điểm M\left(x_0;f\left(x_0\right)\right)  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right) có đạo hàm trên \left(a;b\right) và đạt cực đại hoặc cực tiểu tại x_0 thì f'\left(x_0\right)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right) liên tục trên khoảng K=\left(x_0-h;x_0+h\right) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}, với h>0.a) Nếu f'\left(x\right)>0 trên khoảng \left(x_0-h;x_0\right) và f'\left(x\right)< 0 trên khoảng \left(x_0;x_0+h\right) thì x_0 là một điểm cực đại của hàm số f\left(x\right).

b)  Nếu f'\left(x\right)< 0 trên khoảng \left(x_0-h;x_0\right) và f'\left(x\right)>0 trên khoảng \left(x_0;x_0+h\right) thì x_0 là một điểm cực tiểu của hàm số f\left(x\right).

    

 

Luyện tập   

Tìm các điểm cực trị của hàm số y=-x^2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}.

f'\left(x\right)=-2x ; f'\left(x\right)=0\Leftrightarrow x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0.Hàm số đạt cực đại bằng 0 tại x=1.Hàm số không có điểm cực trị.Điểm \left(0;1\right) là điểm cực trị của đồ thị hàm số.Kiểm traIII. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right) . Tìm các điểm tại đó f'\left(x\right) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập   

Cho hàm số y=-x\left(x^2-3\right). Khẳng định nào dưới đây đúng?

AHàm số đạt cực đại tại x_1=0 và đạt cực tiểu tại x_2=\sqrt{3}.BPhương trình y'=0 có 2 nghiệm là x_1=0 và x_2=\sqrt{3}.CHàm số có 3 cực trị.DHàm số đạt cực tiểu tại x_1=-1 và đạt cực đại tại x_2=1.Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right), với h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0 thì x_0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0 thì x_0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right). Giải phương trình f'\left(x\right)=0 và kí hiệu x_i (i=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right) và f''\left(x_i\right).

4. Dựa vào dấu của f''\left(x_i\right) suy ra tính chất cực trị của điểm x_i.

 

Luyện tập   

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.

f''\left(x\right)=3x^2-4.

Với x_1=0 ta có f''\left(0\right) <> 0 \Rightarrow x_0=0 là điểm cực tiểucực đại.

Với x_2=-2 ta có f''\left(-2\right) <> 0 \Rightarrow x_2=-2 là điểm cực tiểucực đại.

Kiểm traI. Khái niệm cực đại, cực tiểuLuyện tập   

Hàm số y=-x^2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0 tại x=.

Trên khoảng \left(-\infty;+\infty\right) hàm số đạt giá trị lớn nhất bằng  tại x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right) xác định và liên tục trên khoảng \left(a;b\right) (có thể a là -\infty, b là +\infty ) và điểm x_0\in\left(a;b\right).

a) Nếu tồn tại số h>0 sao cho f\left(x\right)< f\left(x_0\right) với mọi x\in\left(x_0-h;x_0+h\right) và x\ne x_0 thì ta nói hàm số f\left(x\right) đạt cực đại tại x_0.

b) Nếu tồn tại số h>0 sao cho f\left(x\right)>f\left(x_0\right) với mọi x\in\left(x_0-h;x_0+h\right) và x\ne x_0 thì ta nói hàm số f\left(x\right) đạt cực tiểu tại x_0.

Chú ý:

1) Nếu hàm số f\left(x\right) đạt cực đại (cực tiểu) tại x_0 thì x_0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ} (f_{CT}), còn điểm M\left(x_0;f\left(x_0\right)\right)  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right) có đạo hàm trên \left(a;b\right) và đạt cực đại hoặc cực tiểu tại x_0 thì f'\left(x_0\right)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right) liên tục trên khoảng K=\left(x_0-h;x_0+h\right) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}, với h>0.a) Nếu f'\left(x\right)>0 trên khoảng \left(x_0-h;x_0\right) và f'\left(x\right)< 0 trên khoảng \left(x_0;x_0+h\right) thì x_0 là một điểm cực đại của hàm số f\left(x\right).

b)  Nếu f'\left(x\right)< 0 trên khoảng \left(x_0-h;x_0\right) và f'\left(x\right)>0 trên khoảng \left(x_0;x_0+h\right) thì x_0 là một điểm cực tiểu của hàm số f\left(x\right).

    

 

Luyện tập   

Tìm các điểm cực trị của hàm số y=-x^2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}.

f'\left(x\right)=-2x ; f'\left(x\right)=0\Leftrightarrow x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0.Hàm số đạt cực đại bằng 0 tại x=1.Hàm số không có điểm cực trị.Điểm \left(0;1\right) là điểm cực trị của đồ thị hàm số.Kiểm traIII. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right) . Tìm các điểm tại đó f'\left(x\right) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập   

Cho hàm số y=-x\left(x^2-3\right). Khẳng định nào dưới đây đúng?

AHàm số đạt cực đại tại x_1=0 và đạt cực tiểu tại x_2=\sqrt{3}.BPhương trình y'=0 có 2 nghiệm là x_1=0 và x_2=\sqrt{3}.CHàm số có 3 cực trị.DHàm số đạt cực tiểu tại x_1=-1 và đạt cực đại tại x_2=1.Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right), với h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0 thì x_0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0 thì x_0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right). Giải phương trình f'\left(x\right)=0 và kí hiệu x_i (i=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right) và f''\left(x_i\right).

4. Dựa vào dấu của f''\left(x_i\right) suy ra tính chất cực trị của điểm x_i.

 

Luyện tập   

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.

f''\left(x\right)=3x^2-4.

Với x_1=0 ta có f''\left(0\right) <> 0 \Rightarrow x_0=0 là điểm cực tiểucực đại.

Với x_2=-2 ta có f''\left(-2\right) <> 0 \Rightarrow x_2=-2 là điểm cực tiểucực đại.

Kiểm tra
4
14 tháng 10 2021

làm thế này thì chết mất

14 tháng 10 2021

độc kéo xuống thôi cũng lâu nx

I. Tính đơn điệu của hàm sốHãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:Luyện tập   Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:Hàm số giảm trong khoảng nào dưới đây?(0;\pi)(0;π)(-\dfrac{\pi}{2};0)(−2π​;0)(\pi;\dfrac{3\pi}{2})(π;23π​)(-\dfrac{\pi}{2};\dfrac{\pi}{2})(−2π​;2π​)Kiểm tra1. Định nghĩa:Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm...
Đọc tiếp
I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

sdddssKiểm traI. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

4
14 tháng 10 2021

có vẻ ngắn

14 tháng 10 2021

đọc hết thanh xuân

14 tháng 10 2021

999999999:99=10,101,010.09090909 nha bn, đúng 100% nha

14 tháng 10 2021

1+1=2 

~ học tốt~

1 + 1 = 2

@Cỏ

#Forever

14 tháng 10 2021

 bổ Một quả táo ra

chia đôi 1 quả táo

14 tháng 10 2021
Ăn. Vé báo cáo nhé
14 tháng 10 2021

Bằng 13580264800