K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

sdddssKiểm traI. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

4
14 tháng 10 2021

có vẻ ngắn

14 tháng 10 2021

đọc hết thanh xuân

30 tháng 3 2022

Cho hàm số y=f(x)y=f(x) có đạo hàm và liên tục trên [0;π2][0;π2]thoả mãn f(x)=f′(x)−2cosxf(x)=f′(x)−2cosx. Biết f(π2)=1f(π2)=1, tính giá trị f(π3)f(π3)

A. √3+1/2         B. √3−1/2          C. 1−√3/2             D. 0

NV
11 tháng 3 2022

\(2x.f'\left(x\right)-f\left(x\right)=x^2\sqrt{x}.cosx\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}}.f'\left(x\right)-\dfrac{1}{2x\sqrt{x}}f\left(x\right)=x.cosx\)

\(\Leftrightarrow\left[\dfrac{f\left(x\right)}{\sqrt{x}}\right]'=x.cosx\)

Lấy nguyên hàm 2 vế:

\(\int\left[\dfrac{f\left(x\right)}{\sqrt{x}}\right]'dx=\int x.cosxdx\)

\(\Rightarrow\dfrac{f\left(x\right)}{\sqrt{x}}=x.sinx+cosx+C\)

\(\Rightarrow f\left(x\right)=x\sqrt{x}.sinx+\sqrt{x}.cosx+C.\sqrt{x}\)

Thay \(x=4\pi\)

\(\Rightarrow0=4\pi.\sqrt{4\pi}.sin\left(4\pi\right)+\sqrt{4\pi}.cos\left(4\pi\right)+C.\sqrt{4\pi}\)

\(\Rightarrow C=-1\)

\(\Rightarrow f\left(x\right)=x\sqrt{x}.sinx+\sqrt{x}.cosx-\sqrt{x}\)

AH
Akai Haruma
Giáo viên
23 tháng 5 2022

Lời giải:

$f'(x)=1-\cos x\geq 0$ với mọi $x\in [0; \frac{\pi}{2}]$. Trong đó $f'(x)=1-\cos x=0$ chỉ xảy ra khi $x=0$ với điều kiện $x\in [0; \frac{\pi}{2}]$ nên hàm số $f(x)$ đồng biến trên $[0; \frac{\pi}{2}]$

11 tháng 11 2023

48 D

50 loading...  

loading...    

11 tháng 11 2023

xem có j k hiểu hỏi a nha

24 tháng 3 2016

a) Xét phương trình : \(f'\left(x\right)=2x^2+2\left(\cos a-3\sin a\right)x-8\left(1+\cos2a\right)=0\)

 Ta có : \(\Delta'=\left(\cos a-3\sin a\right)^2+16\left(1+\cos2a\right)=\left(\cos a-3\sin a\right)^2+32\cos^2\)\(a\ge0\) với mọi a

Nếu \(\Delta'=0\Leftrightarrow\cos a-3\sin a=\cos a=0\Leftrightarrow\sin a=\cos a\Rightarrow\sin^2a+\cos^2a=0\) (Vô lí)

Vậy \(\Delta'>0\) 

với mọi a \(\Rightarrow f'\left(x\right)=0\) 

có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số có cực đại, cực tiểu

b) Theo Viet ta có \(x_1+x_2=3\sin a-\cos a\)

                             \(x_1x_2=-4\left(1+\cos2a\right)\)

\(x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(3\sin a-\cos a\right)^2+8\left(1+\cos2a\right)=9+8\cos^2a-6\sin a\cos a\)

              \(=9+9\left(\sin^2a+\cos^2a\right)-\left(3\sin a+\cos a\right)^2=18-\left(3\sin a+\cos2a\right)\le18\)

 

25 tháng 3 2016

Hàm số có cực đại và cực tiểu

\(\Leftrightarrow f'\left(x\right)=x^2-2mx+m=0\) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'=m^2-m>0\Leftrightarrow m\in D=\left(-\infty,0\right)\cup\left(1,+\infty\right)\) (*)

Với điều kiện này thì \(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số \(f\left(x\right)\) đạt cực trị tại  \(x_1,x_2\). Theo định lí Viet ta có : \(x_1+x_2=2m;x_1x_2=m\) Suy ra :

\(\left|x_1-x_2\right|\ge8\Leftrightarrow\left|x_1-x_2\right|^2\ge64\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge64\Leftrightarrow4m^2-4m\ge64\)

\(\Leftrightarrow m^2-m-16\ge0\Leftrightarrow m\in\left(-\infty,\frac{1-\sqrt{65}}{2}\right)\cup\left(\frac{1+\sqrt{65}}{2},+\infty\right)\) (thỏa mãn (*))

Vậy để \(\left|x_1-x_2\right|\ge8\) thì \(m\in\left(-\infty,\frac{1-\sqrt{65}}{2}\right)\cup\left(\frac{1+\sqrt{65}}{2},+\infty\right)\)