K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 5 2020

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(VT\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}=\sqrt{\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}+\frac{80}{\left(x+y+z\right)^2}}\)

\(VT\ge\sqrt{2\sqrt{\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

26 tháng 2 2022

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

1 tháng 1 2020

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\)

\(\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)

\(\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

31 tháng 12 2016

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

15 tháng 7 2017

từ \(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\)\(\Rightarrow ab+bc+ca=1\)

Thay vào \(\sqrt{x^2+1}\) r` phân tích nhân tử áp dụng C-S là ra :3

3 tháng 12 2018

mình cũng định hỏi câu này sorry mình cx chẳng bt

21 tháng 3 2020

ta có \(x+y+z=2019xyz=>2019x^2=\frac{x^2+xy+xz}{yz}\)

\(=>2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)

\(=>\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

(theo BDT cô -si)

\(=>\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le\frac{x^2+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

tương tự \(\frac{y^2+1+\sqrt{2019y^2+1}}{z}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

=>.vt\(\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

chứng minh được \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

=>\(3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{2019xyz}\le\frac{2019\left(x+y+z\right)^2}{x+y+z}=2019\left(x+y+z\right)\)

=>.vt\(\le2020\left(x+y+z\right)=2020.2019xyz=\)vt

=> dpcm

21 tháng 3 2020

Ta có: \(2019xyz=x+y+z\)

=> \(2019xy=\frac{x}{z}+\frac{y}{z}+1>1\)\(2019yz=\frac{y}{x}+\frac{z}{x}+1>1\)\(2019xz=\frac{x}{y}+\frac{z}{y}+1>1\)

Ta  lại có: \(x+y+z=2019xyz\)

=> \(2019x\left(x+y+z\right)=2019^2x^2yz\)

=> \(2019x^2+1=\left(2019^2x^2yz-2019xy\right)-\left(2019xz-1\right)\)

=> \(2019x^2+1=\left(2019xy-1\right)\left(2019xz-1\right)\le\frac{\left(2019xy+2019xz-2\right)^2}{4}\)

=> \(\sqrt{2019x^2+1}\le\frac{2019xy+2019xz-2}{2}\)

Tương tự : \(\sqrt{2019y^2+1}\le\frac{2019xy+2019yz-2}{2}\)

\(\sqrt{2019z^2+1}\le\frac{2019xz+2019yz-2}{2}\)

=> \(\frac{x^2+1+\sqrt{2019x^2+1}}{x}+\frac{y^2+1+\sqrt{2019y^2+1}}{y}+\frac{z^2+1+\sqrt{2019z^2+1}}{z}\)

\(\le\)\(\frac{x^2+1+\frac{2019xy+2019xz-2}{2}}{x}+\frac{y^2+1+\frac{2019xy+2019yz-2}{2}}{y}+\frac{z^2+1+\frac{2019xz+2019yz-2}{2}}{z}\)

\(=\frac{2x^2+2019xy+2019xz}{2x}+\frac{2y^2+2019xy+2019yz}{2y}+\frac{2z^2+2019xz+2019yz}{2z}\)

\(=x+\frac{2019}{2}y+\frac{2019}{2}z+y+\frac{2019}{2}x+\frac{2019}{2}z+z+\frac{2019}{2}x+\frac{2019}{2}y\)

\(=2020\left(x+y+z\right)=2020.2019xyz\)

Vậy có điều cần cm

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=z\\x+y+z=2019xyz\end{cases}}\Leftrightarrow x=y=z=\frac{1}{\sqrt{673}}\)

13 tháng 8 2016

Ta có x√(1-y2)<= (x+ 1 - y2)/2

y√(1-z2)<=  (y+1 - z2)/2

z√(1- x2)<= (z+ 1 - x2)/2

=>x√(1-y2) +y√(1-z2)z+√(1- x2)<=3/2

Đấu đẳng thức xảy ra khi: x2 = 1 - y2

y= 1-z2

z = 1- x2

Cộng vế theo vế ta được điều phải chứng minh

13 tháng 8 2016

Thanks nhiều

24 tháng 10 2017

Gọi \(\overrightarrow{1a}=\left(x;\frac{1}{x}\right);\overrightarrow{b}=\left(y;\frac{1}{y}\right);\overrightarrow{c}=\left(z;\frac{1}{z}\right)\)

Ta có:

\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}=\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|+\left|\overrightarrow{c}\right|\)

\(\ge\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right|=\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)\(\ge\sqrt{1^2+\frac{9^2}{\left(x+y+z\right)^2}}\)

\(=\sqrt{1+81}=\sqrt{82}\)

    

24 tháng 10 2017

Áp dụng BDT MInkopki

VT\(\ge\)\(\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}=\sqrt{82}\)

BDT minkopki

\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{e^2+f^2}\ge\sqrt{\left(a+c+e\right)^2+\left(b+d+f\right)^2}\)