K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2021

Ta có: \(xyz=1\)=>\(xy=\frac{1}{z}\)
Theo BĐT cosy, ta có: \(x+y+1\ge3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{3\sqrt[3]{z}}\)
tương tự:\(y+z+1\ge3\sqrt[3]{\frac{1}{x}}=\frac{3}{\sqrt[3]{x}}\)
               \(z+x+1\ge3\sqrt[3]{\frac{1}{y}}=\frac{3}{\sqrt[3]{y}}\)
              => \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{x}}{3}+\frac{\sqrt[3]{y}}{3}=\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)
Áp dụng BĐT trên lần nữa ta được \(Q\le\frac{3\sqrt[3]{\sqrt[3]{xyz}}}{3}=\frac{3}{3}=1\)
Vậy DTLN của Q=1
dấu "=" xảy ra khi x=y=z=1

6 tháng 7 2018

Ta có: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\) (Như đề là lớn hơn hoặc bằng 2)

\(\Leftrightarrow\frac{1}{x+1}=2-\frac{1}{y+1}-\frac{1}{z+1}\)

                    \(=\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

                      \(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)  (Vì x;y;z là ba số dương nên Áp dụng BĐT Côsi)

\(\Leftrightarrow\frac{1}{x+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}\left(1\right)\)

Chứng minh tương tự ta được: \(\frac{1}{y+1}\ge\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}\) (2)

                                                \(\frac{1}{z+1}\ge\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\) (3)

Nhân (1);(2);(3) ta có: \(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}.\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}.\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8\sqrt{\left(xyz\right)^2}}{\sqrt{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)

Với x;y;z > 0 ta có: \(1\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}.\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

                     \(\Leftrightarrow1\ge8xyz\Leftrightarrow xyz\le\frac{1}{8}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{x+1}=\frac{y}{y+1}\\\frac{y}{y+1}=\frac{z}{z+1}\\\frac{z}{z+1}=\frac{x}{x+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow x=y=z}\)

Vậy GTLN của xyz = 1/8 khi và chỉ khi x=y=z

P/S: Bài giải của em còn nhiều sai sót, mong mọi người thông cảm, góp ý

15 tháng 2 2018

áp dụng bdt cô si dạng " Rei' ta có

\(x+y+1\le3\sqrt[3]{xy}\)

từ đề bài ta suy ra  \(xy=\frac{1}{z}\Leftrightarrow\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)

suy ra   \(3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{\sqrt[3]{z}}\)

áp dụng cho các BDT còn lại

\(3\sqrt[3]{yz}=\frac{3}{\sqrt[3]{x}};3\sqrt[3]{xz}=\frac{3}{\sqrt[3]{y}}\)

suy ra  \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{y}}{3}+\frac{\sqrt[3]{x}}{3}\) Nhân ngược lên 

vậy 

\(Q\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)

áp dụng BDT cô si dạng "Shinra" ta có  , đặt tử số = S

\(S=\sqrt[3]{z}+\sqrt[3]{y}+\sqrt[3]{x}\ge3\sqrt[3]{\sqrt[3]{xyz}}\)

có xyz=1 vậy    \(3\sqrt[3]{\sqrt[3]{xyz}}=3\)

 suy ra \(S\ge3\) ( ngược dấu loại )

cách 2 áp dụng BDT cosi dạng đặc biệt " Gedou rinne Tensei " ta được

lưu ý " Gedou Rinne Tensei" chỉ dùng lúc nguy cấp + tán gái + thể hiện  và chỉ lừa được những thằng ngu 

không nên dùng trc mặt thầy cô giáo :) .

\(\sqrt[3]{x.1.1}\le\frac{\left(x+2\right)}{3}\)

tương tự vs các BDt còn lại và đặt tử số = S ta được

\(S\le\frac{\left(x+2+y+2+z+2\right)}{3}=\frac{\left(x+y+z+6\right)}{3}=3\) 

thay \(S\le3\) vào biểu thức ta được

\(Q\le\frac{3}{3}=1\)

vây Max Q là 1 dấu = xảy ra khi x=y=z=1

16 tháng 2 2018

Đệch, nói luôn côsi 3 số cho r

Cái này ae nào ko hiểu msg tui, tui dùng điểm rơi giải đc r, dễ hiểu hơn

23 tháng 8 2020

đặt \(\left(a;b;c\right)=\left(\sqrt{\frac{yz}{x}};\sqrt{\frac{zx}{y}};\sqrt{\frac{xy}{z}}\right)\)\(\Rightarrow\)\(a^2+b^2+c^2=1\)

\(A=\Sigma\frac{1}{1-ab}=\Sigma\frac{2ab}{2\left(a^2+b^2+c^2\right)-2ab}+3\le\frac{1}{2}\Sigma\frac{\left(a+b\right)^2}{b^2+c^2+c^2+a^2}\)

\(\le\frac{1}{2}\Sigma\left(\frac{a^2}{c^2+a^2}+\frac{b^2}{b^2+c^2}\right)=\frac{9}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\)

NV
6 tháng 4 2022

\(x+y+z=xyz\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=1\)

\(P=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}=\dfrac{2a}{\sqrt{ab+bc+ca+a^2}}+\dfrac{b}{\sqrt{ab+bc+ca+b^2}}+\dfrac{c}{\sqrt{ab+bc+ca+c^2}}\)

\(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(P=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{c+a}.\dfrac{c}{2\left(c+b\right)}}\)

\(P\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{c+a}+\dfrac{c}{2\left(c+b\right)}\right)=\dfrac{9}{4}\)

\(P_{max}=\dfrac{9}{4}\) khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\) hay \(\left(x;y;z\right)=\left(\dfrac{\sqrt{15}}{7};\sqrt{15};\sqrt{15}\right)\)

 

26 tháng 4 2020

\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)

Dấu = xảy ra <=>x=y=z=1

26 tháng 4 2020

đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)

Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)

Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)

\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

\(\Rightarrow E\ge\frac{3}{2}\)

Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)

12 tháng 12 2018

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

12 tháng 12 2018

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

4 tháng 10 2017

Bạn tham khảo nhé:

Ta có \(xyz=1\Rightarrow x+y+z\ge3\)

Áp dụng BĐT sờ- swat,ta có:

\(Q\ge\frac{9}{2\left(x+y+z\right)+3}\le1\)(vì \(x+y+z\ge3\))

Vậy max=1

4 tháng 10 2017

Hình như bài này mình bị nghịch dấu rồi