K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

a, xét tam giác AEC và tam giác ADB có : AB = AC do tam giác ABC cân tại A (gt)

góc AEC = góc ADB= 90 do ... 

góc A chung

=> tam giác AEC = tam giác ADB (ch - gn)

3 tháng 5 2019

a.

Xét \(\Delta AEC\) và  \(\Delta ADB\) có:AB=AC(cạnh tam giác cân);\(\widehat{AEC}=\widehat{ADB}=90^0\);\(\widehat{A}\) chung

\(\Rightarrow\Delta AEC=\Delta ADB\left(c.g.c\right)\)

b.

Do trung tuyến CD và BM cắt nhau tại I nên I là trọng tâm.

\(\Rightarrow CI=\frac{2}{3}CD\)

Áp dụng định lý py-ta-go vào tam giác vuông BDC ta có:

\(BC^2=BD^2+DC^2\)

\(\Rightarrow CD^2=BC^2-BD^2\)

\(\Rightarrow CD^2=100-64\)

\(\Rightarrow CD=6\) vì \(CD>0\)

\(\Rightarrow CI=\frac{2}{3}\cdot6=4\)

c

Xét \(\Delta BEC\) và \(\Delta BDC\) có:\(\widehat{BEC}=\widehat{BDC}=90^0\);BC chung;\(\widehat{EBC}=\widehat{DCB}\)

\(\Rightarrow\Delta BEC=\Delta BDC\left(c.g.c\right)\Rightarrow BE=DC\Rightarrow AE=AD\)

Xét \(\Delta HAE\) và  \(\Delta HAD\) có:\(\widehat{AEH}=\widehat{ADH}=90^0;AH\)chung;\(AE=AD\)

\(\Rightarrow\Delta HAE=\Delta HAD\left(c.g.c\right)\Rightarrow AH\) là đường phân giác.

Mặt khác tam giác ABC cân nên AH đồng thời là đường cao (nếu bạn chưa học cái này thì có thể CM vuông góc bằng cách tạo giao điểm giữa AH và BC)

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E  BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh

Bài 2 : Cho tam giác ABC cân tại A. Kẻ BD vuông với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm BD và CE. Chứng minh rằng :Tam giác ADB bằng tam giác AECTam giác ADK bằng tam giác AEKAK là tia phân giác của góc ABài 3 : Cho tam giác ABC  cân ở A  ( góc A <  90 độ ). Vẽ BH  vuông góc với AC ( H thuộc AC), CK vuông góc với AB ( K thuộc AB )      A . CMR : AH = AK      B . Gọi I là giao điểm của BH và CK. CMR : AI là...
Đọc tiếp

Bài 2 : Cho tam giác ABC cân tại A. Kẻ BD vuông với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm BD và CE. Chứng minh rằng :

  1. Tam giác ADB bằng tam giác AEC
  2. Tam giác ADK bằng tam giác AEK
  3. AK là tia phân giác của góc A

Bài 3 : Cho tam giác ABC  cân ở A  ( góc A <  90 độ ). Vẽ BH  vuông góc với AC ( H thuộc AC), CK vuông góc với AB ( K thuộc AB )

      A . CMR : AH = AK

      B . Gọi I là giao điểm của BH và CK. CMR : AI là phân giác của góc A

      C . Gọi M là trung điểm của BC. CMR : AM vuông góc với BC

Bài 4 : Cho tam giác BFC cân tại B. Kẻ FE vuông góc với BC tại E, CA vuông góc với BF tại A.

a)      CMR: Tam giác BEF = tam giác BAC

b)     FE cắt CA tại D. CMR : BD là tia phân giác của góc ABC

c)      Gọi M là trung điểm của FC. CMR: BM vuông góc với AE

0

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Xét ΔAMH có 

AE là đường cao

AE là đường trung tuyến

Do đó: ΔAMH cân tại A

hay AM=AH(1)

c: Xét ΔANH có

AD là đường cao

AD là đường trung tuyến

Do đó: ΔANH cân tại A

hay AH=AN(2)

Từ (1) và (2) suy ra AM=AN

hay ΔAMN cân tại A

23 tháng 4 2017

A) Xét tam giác BEC và tam giác CDB có :

            \(\widehat{BEC}\)=\(\widehat{CDB}\)=\(90^0\)

          \(BC\)chung

          \(\widehat{EBC}\)=\(\widehat{DCB}\)( giả thiết )

       \(\Rightarrow\Delta EBC=\Delta DCB\left(G-C-G\right)\)

       Vậy \(BD=CE\)   ( hai canh tương ứng )

B) Xét tam giác DHC và tam giác EHC có :

         \(\widehat{EBH}\)  =\(\widehat{DCH}\)( vì góc CDH=góc BEB ; góc EHB = góc DHC )

          EB=DC ( theo phần a )

         \(\widehat{HEB}\)=\(\widehat{CDH}\)=900

            \(\Rightarrow\)\(\Delta EHB=\Delta DHC\left(G-C-G\right)\)

       \(\Rightarrow BB=HC\)( HAI CẠNH TƯƠNG ỨNG )

\(\Rightarrow\Delta BHC\)cân ( định lí tam giác cân )

         C) Ta có : AB =AC ( giả thiêt )

     Vậy góc A cách đều hai mút B và C 

       Vậy AH là đường trung trực của BC

   d)Xét tam giác BDC và tam giác KDC có : 

 DK=DB ( GT )

     CD ( chung )

     suy ra tam giác BDC =tam giác KDC ( cạnh huyền - cạnh góc vuông )

    \(\Rightarrow\) \(\widehat{BCD}\)=\(\widehat{KCD}\)( HAI GÓC TƯƠNG ỨNG ) 

   Mà ta lai có góc EBC = góc BCD  theo giả thiết )

         \(\Rightarrow\)\(\widehat{EBC}\)=\(\widehat{EBC}\)

  chúc bạn hok giỏi 

17 tháng 6 2022

ủa bạn hình như câu d 2 Tgiac=nhau theo TH 2cgv mà bạn

 

3 tháng 2 2016

Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh 

Câu b )  - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )

              => Góc B1 = góc C1 ( 2 góc tương ứng )

              - Vì tam giác ABC là tam giác cân => góc B = góc C 

               Ta có góc B1 + góc B2 = góc C1 + C2 

               => Góc B2 = góc C2 

               - Vậy tam giác HBC là tam giác cân 

               Câu c )              

            

20 tháng 7 2017

A B C D E H K M