K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔCAB có AD là phân giác

nên BD/CD=BA/CA

b: BD/CD=BA/CA

mà BE=BD và CF=CD

nên BE/CF=BA/CA

c: Xét ΔBFE có BE/BA=CF/CA
nên BC//EF

27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

10 tháng 8 2019

A B C D E O K x L

Gọi Ax là phân giác của ^BAC. Dựng hình bình hành ABLC.

Trước hết ta có \(\Delta\)DBC cân tại B => ^BCD = ^BDC = ^LCD (Vì AB // CL)

Tương tự ^CBE = ^LBE. Do đó BE,CD là hai đường phân giác trong \(\Delta\)BLC

Vì BE giao CD tại O nên LO là phân giác của ^BLC

Chú ý rằng Ax là phân giác của ^BAC, suy ra Ax // LO

Mà OK // Ax nên K,O,L thẳng hàng (Tiên đề Euclid)

Do vậy ^CKL = ^BLK = ^CLK => \(\Delta\)KCL cân tại C => CK = CL = AB (đpcm).

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1
5 tháng 7 2017

A B C D E F

A B C D E

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có 

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

Suy ra: \(\widehat{ABH}=\widehat{DBH}\)

hay BC là tia phân giác của góc ABD

Xét ΔACH vuông tại H và ΔDCH vuông tại H có

HC chung

HA=HD

Do đó: ΔACH=ΔDCH

Suy ra: \(\widehat{ACH}=\widehat{DCH}\)

hay CB là tia phân giác của góc ACD

b: Ta có: ΔABH=ΔDBH

nên BA=BD

Ta có: ΔACH=ΔDCH

nên CA=CD

c: Ta có: ΔAHC vuông tại H

nên \(\widehat{HAC}+\widehat{HCA}=90^0\)

\(\Leftrightarrow\widehat{CAD}=45^0\)

hay \(\widehat{ADC}=45^0\)