K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Theo tc của DTSBN

\(\frac{a+b-3c}{c}=\frac{b+c-3a}{a}=\frac{c+a-3b}{b}=\frac{a+b-3c+b+c-3a+c+a-3b}{c+a+b}\)

                                                                                       \(=\frac{-a-b-c}{a+b+c}=-1\)

\(\Rightarrow\hept{\begin{cases}a+b-3c=-c\\b+c-3a=-a\\c+a-3b=-b\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

\(\Rightarrow a=b=c\left(đpcm\right)\)

18 tháng 7 2017

- viết lại cái đề

* Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)

* Vậy \(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\left(1\right)\)

\(\frac{b}{3c}=\frac{1}{3}\Rightarrow3b=3c\Rightarrow b=c\left(2\right)\)

\(\frac{c}{3d}=\frac{1}{3}\Rightarrow3c=3d\Rightarrow c=d\left(3\right)\)

\(\frac{d}{3a}=\frac{1}{3}\Rightarrow3d=3a\Rightarrow d=a\left(4\right)\)

từ (1),(2),(3),(4) ta có:

a=b,b=c,c=d,d=a

=> a=b=c=d

13 tháng 1 2022

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-3c}{c}=\dfrac{b+c-3a}{a}=\dfrac{c+a-3b}{b}=\dfrac{a+b-3c+b+c-3a+c+a-3b}{c+a+b}=\dfrac{-\left(a+b+c\right)}{a+b+c}=-1\)

\(\dfrac{a+b-3c}{c}=-1\Rightarrow a+b-3c=-c\Rightarrow a+b-2c=0\left(1\right)\)

\(\dfrac{b+c-3a}{a}=-1\Rightarrow b+c-3a=-a\Rightarrow b+c-2a=0\left(2\right)\)

\(\dfrac{c+a-3b}{b}=-1\Rightarrow a+c-3b=-b\Rightarrow a+c-2b=0\left(3\right)\)

Từ (1), (2) ta có:\(a+b-2c=b+c-2a\Rightarrow3a=3c\Rightarrow a=c\left(4\right)\)

Từ (1), (3) ta có:\(a+b-2c=a+c-2b\Rightarrow3b=3c\Rightarrow b=c\left(5\right)\)

Từ (4), (5)\(\Rightarrow a=b=c\)

13 tháng 8 2020

\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)

\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)

\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)

\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)

\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

Vậy VT = VP, đẳng thức được chứng minh

2 tháng 2 2020

Xét \(\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b+c\right)a+bc}+\frac{a+2b+c}{\left(a+b+c\right)b+ca}+\frac{a+b+2c}{\left(a+b+c\right)c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a^2+ab+ca+bc}+\frac{a+2b+c}{ab+b^2+bc+ca}+\frac{a+b+2c}{ac+bc+c^2+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a\left(a+b\right)+c\left(a+b\right)}+\frac{a+2b+c}{b\left(b+a\right)+c\left(b+a\right)}+\frac{a+b+2c}{c\left(a+c\right)+b\left(a+c\right)}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}+\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}+\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm 

\(\Rightarrow\hept{\begin{cases}\left(a+b\right)\left(a+c\right)\le\left(\frac{2a+b+c}{2}\right)^2=\frac{\left(2a+b+c\right)^2}{4}\\\left(b+a\right)\left(b+c\right)\le\left(\frac{a+2b+c}{2}\right)^2=\frac{\left(a+2b+c\right)^2}{4}\\\left(a+c\right)\left(b+c\right)\le\left(\frac{a+b+2c}{2}\right)^2=\frac{\left(a+b+2c\right)^2}{4}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}\ge\frac{4\left(2a+b+c\right)}{\left(2a+b+c\right)^2}=\frac{4}{2a+b+c}\\\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}\ge\frac{4\left(a+2b+c\right)}{\left(a+2b+c\right)^2}=\frac{4}{a+2b+c}\\\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\ge\frac{4\left(a+b+2c\right)}{\left(a+b+2c\right)^2}=\frac{4}{a+b+2c}\end{cases}}\)

\(\Rightarrow VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Xét \(\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\ge\frac{\left(2+2+2\right)^2}{2a+b+c+a+2b+c+a+b+2c}\)

\(=\frac{36}{4\left(a+b+c\right)}=\frac{36}{12}=3\)

Mà \(VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

\(\Rightarrow VT\ge3\)

\(\Leftrightarrow\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\ge3\left(đpcm\right)\)

Chúc bạn học tốt !!!

29 tháng 6 2018

Ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)

\(=\frac{a+b+c+d}{3b+3c+3d+3a}\)

\(=\frac{a+b+c+d}{3\left(a+b+c+d\right)}\)

\(=\frac{1}{3}\)

Với \(\frac{a}{3b}=\frac{1}{3}=>a=\frac{1}{3}.3b=>a=b\)

Với \(\frac{b}{3c}=\frac{1}{3}=>b=\frac{1}{3}.3c=>b=c\)

Với \(\frac{c}{3d}=\frac{1}{3}=>c=\frac{1}{3}.3d=>c=d\)

Vậy a = b = c = d ( Đpcm )

19 tháng 3 2020

cảm ơn bạn