K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac{a^2}{b}+\frac{b^2}{a}+7\left(a+b\right)\ge8\sqrt{2\left(a^2+b^2\right)}\)

\(\Leftrightarrow a^3+b^3+7ab\left(a+b\right)\ge8ab\sqrt{2\left(a^2+b^2\right)}\)

Ta có: \(VP=8\sqrt{ab}\sqrt{\left(a^2+b^2\right)\cdot2ab}\le^{am-gm}4\sqrt{ab}\left(a+b\right)^2\)

\(VT=\left(a+b\right)\left[\left(a+b\right)^2+4ab\right]\ge^{am-gm}\left(a+b\right)4\sqrt{ab}\left(a+b\right)\ge VP\)

=> ĐPCM

25 tháng 8 2020

Dạ em cảm ơn ạ!

NV
21 tháng 8 2020

b/

\(a^3+a^3+1\ge3\sqrt[3]{a^6}=3a^2\)

Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)

Cộng vế với vế:

\(2\left(a^3+b^3+c^3\right)\ge3\left(a^2+b^2+c^2\right)-3\)

Mặt khác ta lại có:

\(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)\ge2\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2\right)-3\ge2\left(a^2+b^2+c^2\right)+3-3\)

\(\Leftrightarrow a^3+b^3+c^3\ge a^2+b^2+c^2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
21 tháng 8 2020

\(\frac{a^3}{\left(b+2\right)^2}+\frac{b+2}{27}+\frac{b+2}{27}\ge3\sqrt[3]{\frac{a^3\left(b+2\right)^2}{27^2.\left(b+2\right)^2}}=\frac{a}{3}\)

Tương tự: \(\frac{b^3}{\left(c+2\right)^2}+\frac{c+2}{27}+\frac{c+2}{27}\ge\frac{b}{3}\) ; \(\frac{c^3}{\left(a+2\right)^2}+\frac{a+2}{27}+\frac{a+2}{27}\ge\frac{c}{3}\)

Cộng vế với vế:

\(VT+\frac{2\left(a+b+c\right)+12}{27}\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow VT+\frac{2}{3}\ge1\Leftrightarrow VT\ge\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

5 tháng 7 2018

Đặt x = a - b ; y = b - c ; z = c - a thì x + y + z = a - b + b - c + c - a = 0

Ta có : \(\sqrt{\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{y})^2-2(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx})\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2-2\frac{x+y+z}{xyz}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2=(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})^2(đpcm)\)

Chúc bạn học tốt

NV
14 tháng 9 2020

a/

\(VT\ge\frac{\frac{1}{2}\left(a+b\right)^2}{a+b}+\frac{\frac{1}{2}\left(b+c\right)^2}{b+c}+\frac{\frac{1}{2}\left(c+a\right)^2}{c+a}=a+b+c\ge3\sqrt[3]{abc}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ Ta có: \(x^4+y^4\ge\frac{1}{2}\left(x^2+y^2\right)\left(y^2+y^2\right)\ge xy\left(x^2+y^2\right)\)

\(\Rightarrow VT\le\frac{1}{a+bc\left(b^2+c^2\right)}+\frac{1}{b+ca\left(a^2+c^2\right)}+\frac{1}{c+ab\left(a^2+b^2\right)}\)

\(VT\le\frac{1}{a+\frac{1}{a}\left(b^2+c^2\right)}+\frac{1}{b+\frac{1}{b}\left(a^2+c^2\right)}+\frac{1}{c+\frac{1}{c}\left(a^2+b^2\right)}\)

\(VT\le\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}=\frac{a+b+c}{a^2+b^2+c^2}\)

\(VT\le\frac{a+b+c}{\frac{1}{3}\left(a+b+c\right)^2}=\frac{3}{a+b+c}\le\frac{3}{3\sqrt[3]{abc}}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

1 tháng 9 2020

Dạ em cảm ơn ạ

NV
31 tháng 8 2020

Sửa đề: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{3}{a+b+c}\ge4\)

\(\Leftrightarrow\frac{a^2c+b^2a+c^2b}{abc}+\frac{3}{a+b+c}\ge4\)

\(\Leftrightarrow P=a^2c+b^2a+c^2b+\frac{3}{a+b+c}\ge4\)

Ta có:

\(a^2c+a^2c+b^2a\ge3\sqrt[3]{a^3.\left(abc\right)^2}=3a\)

\(b^2a+b^2a+c^2b\ge3\sqrt[3]{b^3\left(abc\right)^2}=3b\)

\(c^2b+c^2b+a^2c\ge3\sqrt[3]{c^3\left(abc\right)^2}=3c\)

Cộng vế với vế: \(a^2c+b^2a+c^2b\ge a+b+c\)

\(\Rightarrow P\ge a+b+c+\frac{3}{a+b+c}=\frac{a+b+c}{3}+\frac{3}{a+b+c}+\frac{2}{3}\left(a+b+c\right)\)

\(\Rightarrow P\ge2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}+\frac{2}{3}.3\sqrt[3]{abc}=4\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

5 tháng 7 2018

\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

áp dụng bất đẳng thức cô si ta có:

\(\left(a+b\right)+2\sqrt{ab}>=2\sqrt{\left(a+b\right)2\sqrt{ab}}\)

31 tháng 5 2019

Chừa 1 suất cho mik.  7h mik về

31 tháng 5 2019

Làm đại luôn mặc dù chưa xong xD. Có sai sót gì cho xin lỗi nha!

Đặt: \(M=\frac{a^2+bc}{\left(b+c\right)^2}+\frac{b^2+ca}{\left(c+a\right)^2}+\frac{c^2+ab}{\left(a+b\right)^2}\)

\(M=\frac{\frac{1}{\left(b+c\right)^2}}{\frac{1}{a^2+bc}}+\frac{\frac{1}{\left(c+a\right)^2}}{\frac{1}{b^2+ca}}+\frac{\frac{1}{\left(a+b\right)^2}}{\frac{1}{c^2+ab}}\)

Áp dụng Bđt AM-GM dạng Engel:

\(M\ge\frac{\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)^2}{\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}}\)

Chuẩn hóa: \(a+b+c=3\)

Có: \(A=\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)^2\ge\left(\frac{9}{2\left(a+b+c\right)}\right)^2=\left(\frac{3}{2}\right)^2\)

CM:\(B=\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{3}{2}\)so what ? Tới đây k biết làm.