K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

\(a,VT=-\left(-a+b\right)-\left(b+c\right)-\left(a-c\right)=a-b-b-c-a+c=-2b=VP\)

\(b,VT=-\left(a-b-c\right)+\left(-b+c+a\right)-\left(a+b-c\right)=-a+b+c-b+c+a-a-b+c=-a-b+3c=VP\)

4 tháng 8 2021

a/ Chứng minh:

\(\left(x+a\right)\left(x+b\right)\)

\(=x^2+bx+ax+ab\)

\(=x^2+\left(ax+bx\right)+ab\)

\(=x^2+x\left(a+b\right)+ab=VP\) (đpcm)

b/ Chứng minh:

\(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)

\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)

\(=x^3+cx^2+ax^2+acx+bx^2+bcx+abx+abc\)

\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+bcx+acx\right)+abc\)

\(=x^3+x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)+abc=VP\) (đpcm)

8 tháng 7 2021

áp dụng bất đẳng thức cô si cho:

*a+b≥\(2\sqrt{ab}\)

*b+c≥\(2\sqrt{bc}\)

*c+a≥\(2\sqrt{ca}\)

➩2(a+b+c)≥2(\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\))

➩ĐPCM

Ta có:

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\Leftrightarrow2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt[]{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

(luôn đúng với mọi a,b,c không âm)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)

 

 Câu 29. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 32. Tìm giá trị lớn nhất của biểu thức: Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:a) ab và a/b là số vô tỉ.b) a + b và a/b là số...
Đọc tiếp

 

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 32. Tìm giá trị lớn nhất của biểu thức: 

Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.

Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 38. Cho a, b, c, d > 0. Chứng minh:

Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 40. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

Câu 41. Tìm các giá trị của x để các biểu thức sau có nghĩa:

                             Mn giúp em với ;-;

0
25 tháng 5 2021

a) \(\dfrac{a^2+a+1}{a^2-a+1}=\dfrac{\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)

Thấy tử và mẫu của phân số đều lớn hơn 0 => \(\dfrac{a^2+a+1}{a^2-a+1}>0\)

b)\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2a+1\right)+\left(c^2-2a+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (luôn đúng với mọi a,b,c)

Dấu = xra khi a=b=c=1

25 tháng 5 2021

b)

\(a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) ( Luôn đúng)

Dấu "=" xảy ra khi a=b=c=1

 

21 tháng 5 2017

1) Ta có: a + b + c = 0 <=> \(a+b=-c\)

=> \(\left(a+b\right)^3=-c^3\)

=> \(a^3+3ab\left(a+b\right)+b^3\) = \(-c^3\)

=> \(a^3+b^3+c^3=-3ab\left(a+b\right)\)

=> \(a^3+b^3+c^3=-3ab.\left(-c\right)\) ( Vì \(a+b=-c\))

=> \(a^3+b^3+c^3=3abc\) => đpcm

21 tháng 5 2017

2) Vì a,b,c là độ dài 3 cạnh của tam giác

=> a,b,c > 0 và a < b+c ; b < a+ c ; c < a+ b

Ta có: \(\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}\) = \(\dfrac{2a}{a+b+c}\) ( b + c > 0; a >0)

\(\dfrac{b}{a+c}< \dfrac{b+b}{a+c+b}\) = \(\dfrac{2b}{a+b+c}\) ( a + c > 0; b > 0)

\(\dfrac{c}{a+b}< \dfrac{c+c}{a+b+c}\) = \(\dfrac{2c}{a+b+c}\) ( a + b >0; c > 0)

=> \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\) < \(\dfrac{2a+2b+2c}{a+b+c}\) = \(\dfrac{2\left(a+b+c\right)}{a+b+c}\) = 2

=> đpcm

31 tháng 7 2018

a3 + b3 + c3 = ( a + b + c). +( a2 + b2 + c2 - ab - bc - ca) + 3abc

                    = 0 . (a2 + b2 + c2 - ab - bc - ca ) + 3abc

                    = 3abc      ( đpcm)

31 tháng 7 2018

câu 2 chưa rõ đề nha

18 tháng 1 2018

BĐT cần chứng minh tương đương :

\(\dfrac{a^8+b^8+c^8}{a^3b^3c^3}\ge\dfrac{ab+bc+ac}{abc}\)

\(\Leftrightarrow\dfrac{a^8+b^8+c^8}{a^2b^2c^2}\ge ab+bc+ac\)

\(\Leftrightarrow\dfrac{a^6}{b^2c^2}+\dfrac{b^6}{a^2c^2}+\dfrac{c^6}{a^2b^2}\ge ab+bc+ac\)

Do \(a^2+b^2+c^2\ge ab+bc+ac\)

Ta phải cm

\(\dfrac{a^6}{b^2c^2}+\dfrac{b^6}{a^2c^2}+\dfrac{c^6}{a^2b^2}\ge a^2+b^2+c^2\)(1)

Đặt : \(\left(a^2;b^2;c^2\right)=\left(x;y;z\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow\dfrac{x^3}{yz}+\dfrac{y^3}{xz}+\dfrac{z^3}{xy}\ge x+y+z\)

Áp dụng C.B.S

\(\Rightarrow\dfrac{x^3}{yz}+\dfrac{y^3}{xz}+\dfrac{z^3}{xy}=\dfrac{x^4}{xyz}+\dfrac{y^4}{xyz}+\dfrac{z^4}{xyz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3xyz}\)

Theo Bunhiacopxki: \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)\(\Rightarrow\left(x^2+y^2+z^2\right)^2\ge\dfrac{\left(x+y+z\right)^4}{9}\)

Theo Cauchy : \(\Rightarrow3xyz\le\dfrac{\left(x+y+z\right)^3}{9}\)

\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{3xyz}\ge\dfrac{\dfrac{\left(x+y+z\right)^4}{9}}{\dfrac{\left(x+y+z\right)^3}{9}}=x+y+z\)

\(\Rightarrow\)\(\Rightarrow\dfrac{x^3}{yz}+\dfrac{y^3}{xz}+\dfrac{z^3}{xy}\ge x+y+z\)

=> đpcm

18 tháng 1 2018

BĐT cần chứng minh tương đương :

a8+b8+c8a3b3c3≥ab+bc+acabca8+b8+c8a3b3c3≥ab+bc+acabc

⇔a8+b8+c8a2b2c2≥ab+bc+ac⇔a8+b8+c8a2b2c2≥ab+bc+ac

⇔a6b2c2+b6a2c2+c6a2b2≥ab+bc+ac⇔a6b2c2+b6a2c2+c6a2b2≥ab+bc+ac

Do a2+b2+c2≥ab+bc+aca2+b2+c2≥ab+bc+ac

Ta phải cm

a6b2c2+b6a2c2+c6a2b2≥a2+b2+c2a6b2c2+b6a2c2+c6a2b2≥a2+b2+c2(1)

Đặt : (a2;b2;c2)=(x;y;z)(a2;b2;c2)=(x;y;z)

⇒(1)⇔x3yz+y3xz+z3xy≥x+y+z⇒(1)⇔x3yz+y3xz+z3xy≥x+y+z

Áp dụng C.B.S

⇒x3yz+y3xz+z3xy=x4xyz+y4xyz+z4xyz≥(x2+y2+z2)23xyz⇒x3yz+y3xz+z3xy=x4xyz+y4xyz+z4xyz≥(x2+y2+z2)23xyz

Theo Bunhiacopxki: x2+y2+z2≥(x+y+z)23x2+y2+z2≥(x+y+z)23⇒(x2+y2+z2)2≥(x+y+z)49⇒(x2+y2+z2)2≥(x+y+z)49

Theo Cauchy : ⇒3xyz≤(x+y+z)39⇒3xyz≤(x+y+z)39

⇒(x2+y2+z2)23xyz≥(x+y+z)49(x+y+z)39=x+y+z⇒(x2+y2+z2)23xyz≥(x+y+z)49(x+y+z)39=x+y+z

⇒⇒⇒x3yz+y3xz+z3xy≥x+y+z⇒x3yz+y3xz+z3xy≥x+y+z

=> đpcm

21 tháng 9 2019

\(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\)

\(=\frac{a+c}{a+b}+\frac{2c}{a+b}+\frac{a+b}{a+c}+\frac{2b}{a+c}+\frac{2a}{b+c}\)

\(=2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)\)

Áp dụng BĐT Cauchy - Schwar:

\(\frac{a+c}{a+b}+\frac{a+b}{a+c}\ge2\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b\right)\left(a+c\right)}}=2\)(1)

Áp dụng BĐT Nesbit:

\(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\ge\frac{3}{2}\)

\(\Leftrightarrow2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)\ge3\)(2)

Từ (1) và (2) suy ra \(2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)\ge5\)

hay \(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\ge\left(đpcm\right)\)

24 tháng 6 2018

Ta có: \(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}-5\ge0\)

\(\Leftrightarrow\frac{a+3c}{a+b}-2+\frac{a+3b}{a+c}-2+\frac{2a}{b+c}-1\ge0\)

Giải bất phương trình

Cuối cùng ta được: \(\left(c-a\right)^2\left(\frac{1}{\left(a+b\right)\left(b+c\right)}\right)+2\left(b-c\right)^2\left(\frac{1}{\left(a+c\right)\left(a+b\right)}\right)+\left(a-b\right)^2\) \(\left(\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\ge0\)

BĐT đúng <=> a = b = c