K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

Trong ba số tự nhiên a,b,c phải có ít nhất hai số cùng chẵn lẻ .

Giả sử : hai số đó là a và b .

Vì : bc cùng tính chẵn lẻ với b ⇒p=bc+a⇒p=bc+a chẵn

Mà : p là số nguyên tố ⇒p=2⇒b=a=1⇒p=2⇒b=a=1

Khi đó : q=ab+c=1+c=ca+1=ca+b=rq=ab+c=1+c=ca+1=ca+b=r

Nếu hai số cùng tính chẵn lẻ là a và c hoặc b và c thì ta làm tương tự như trên

⇒⇒ Trong ba số nguyên tố p,q,r phải có hai số bằng nhau .

16 tháng 7 2018

Ta có: \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)\(\Leftrightarrow a\left(c^2+b^2\right)=c\left(a^2+b^2\right)\)\(\Leftrightarrow ac^2+ab^2=a^2c+b^2c\Leftrightarrow ac\left(c-a\right)-b^2\left(c-a\right)=0\)

\(\Leftrightarrow\left(c-a\right)\left(ac-b^2\right)=0\)

Vì \(a\ne c\)nên \(c-a\ne0\)

Do đó \(ac-b^2=0\Leftrightarrow ac=b^2\Rightarrow\sqrt{ac}=b\)

Giả sử \(a^2+b^2+c^2\)là số nguyên tố

Ta có \(a^2+b^2+c^2=a^2+ac+c^2=\left(a+c\right)^2-ac=\left(a+c\right)^2-b^2\)\(=\left(a-b+c\right)\left(a+b+c\right)\)

\(=\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+3\sqrt{ac}\right]\)

\(\left[\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\right]\)

Vì \(a^2+b^2+c^2\)là số nguyên tố nên có một ước số là 1

Mà \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}< \left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\)

nên \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}=1\Leftrightarrow\left(\sqrt{a}-\sqrt{c}\right)^2=1-\sqrt{ac}\)

Vì \(a\ne c\Rightarrow\sqrt{a}\ne\sqrt{c}\Rightarrow\sqrt{a}-\sqrt{c}\ne0\)\(\Rightarrow\left(\sqrt{a}-\sqrt{c}\right)^2>0\)

Do đó \(1-\sqrt{ac}>0\Rightarrow\sqrt{ac}< 1\Rightarrow ac< 1\)(1)

Mà \(a^2+b^2>0\)và \(c^2+b^2>0\)nên \(\frac{a^2+b^2}{c^2+b^2}>0\Rightarrow\frac{a}{c}>0\Rightarrow\)a, c cùng dấu \(\Rightarrow ac>0\)(2)

Từ (1), (2) suy ra \(0< ac< 1\)

Mà a,c là số nguyên nên ac là số nguyên 

Do đó không có giá trị a,c thỏa mãn

suy ra điều giả sử sai

Vậy \(a^2+b^2+c^2\) không thể là số nguyên tố

1 tháng 12 2019

tự giải vl

29 tháng 7 2021

Ta có:

\(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)

\(\Leftrightarrow ac^2+ab^2=ca^2+cb^2\)

\(\Leftrightarrow ac\left(c-a\right)=b^2\left(c-a\right)\)

\(\Leftrightarrow ac=b^2\)

Thế vô ta được

\(a^2+b^2+c^2=a^2+2ac+c^2+b^2-2ac\)

\(=\left(a+c\right)^2-b^2=\left(a+c-b\right)\left(a+c+b\right)\)

Làm nốt

24 tháng 12 2021

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)

Khi đó:

\(\dfrac{a}{b}=1\Rightarrow a=b\left(1\right)\)

\(\dfrac{b}{c}=1\Rightarrow b=c\left(2\right)\)

\(\dfrac{c}{a}=1\Rightarrow c=a\left(3\right)\)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow a=b=c\)

27 tháng 4 2023

Với a,b,c dương, ta có:

a/a+b > a/a+b+c

b/b+c > b/a+b+c

c/c+a > c/a+b+c

=> A > a/a+b+c + b/a+b+c + c/a+b+c => A>1.               (1)

Ta lại có

A = a/a+b + b/b+c + c/c+a

   = a+b-b/a+b + b+c-c/b+c + c+a-a/c+a

   = 1-b/a+b + 1-c/b+c + 1-a/c+a

   = 3-(b/a+b + c/b+c + a/c+a) = 3-B

Tương tự phần chứng minh trên, ta có

b/a+b > b/a+b+c

c/b+c > c/a+b+c

a/a+c > a/a+b+c

=> B > b/a+b+c + c/a+b+c + a/a+b+c => B>1

mà A = 3-B

=> A < 2                                                           (2)

Từ (1) và (2) => 1<A<2

Mà không có số tự nhiên nào ở giữa 1 và 2 => A không là số tự nhiên

 

23 tháng 3 2022

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{a+b+c}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{0}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)