K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nghịch lý Ngày hành quyết bất ngờ là một trong những nghịch lý logic đã làm vô số các nhà bác học từ cổ chí kim đau đầu vì sự khó hiểu của nghịch lý này. Nội dung nghịch lý như sau: Tại một phiên tòa, thẩm phán ra phán quyết đối với người tử tù rằng anh ta sẽ bị treo cổ vào giữa trưa một ngày thường (từ thứ Hai đến thứ Sáu) trong tuần sau. Ngày hành quyết sẽ là một bất ngờ...
Đọc tiếp

Nghịch lý Ngày hành quyết bất ngờ là một trong những nghịch lý logic đã làm vô số các nhà bác học từ cổ chí kim đau đầu vì sự khó hiểu của nghịch lý này. Nội dung nghịch lý như sau: Tại một phiên tòa, thẩm phán ra phán quyết đối với người tử tù rằng anh ta sẽ bị treo cổ vào giữa trưa một ngày thường (từ thứ Hai đến thứ Sáu) trong tuần sau. Ngày hành quyết sẽ là một bất ngờ đối với người tử tù và anh ta chỉ có thể biết được khi cai ngục đến gõ cửa buồng ngay trước giờ ra pháp trường.

Sau khi ngẫm nghĩ về bản án, người tù tự kết luận rằng anh ta sẽ thoát chết. Lý luận của anh ta đưa ra như sau: Theo như bản án, ngày hành quyết sẽ hoàn toàn “bất ngờ” đối với anh ta. Như vậy anh ta sẽ không thể bị treo cổ vào ngày thứ 6 (ngày cuối cùng có thể hành quyết trong thời hạn 5 ngày) vì như vậy không bất ngờ chút nào. Tương tự, anh không thể bị treo cổ vào ngày thứ 5 (ngày cuối cùng trong thời hạn hành quyết 4 ngày – vì ngày thứ 6 không treo cổ được rồi nên 5-1 =4).  Cứ như vậy anh tiếp tục cách suy luận này và áp dụng cho các ngày còn lại trong tuần, và kết luận rằng mình chắc chắn sẽ không thể bị hành quyết. Anh ta liền vui vẻ quay trở về buồng ngục của mình hoàn toàn yên tâm đánh một giấc ngon lành. Vài ngày sau, cai ngục đến gõ cửa buồng anh ta vào trưa ngày thứ Tư,  và anh ta bị lôi ra pháp trường. Như vậy, suy luận của người tử tù này sai ở đâu ?

1
3 tháng 12 2017

thì nó sai ở chổ ngày thứ tư trở về trước. Do ngày thứ 6 hoàn toàn không bất ngờ do quá 5 ngày là có thể suy luận ra. Ngày thứ 5 cũng vậy qua 4 ngày ko tử hình mà có thêm ngày thứ 6 ko bất ngờ nên thứ năm cũng sẽ ko bất ngờ nữa. Nhưng thứ 4 nó không theo quy luật đó, nếu qua 3 ngày không tử hình thì có thể là thứ 4 vì chỉ khi 4 ngày không tử hình thì mới ko bất ngờ. nên từngày thứ tư trở lại sẽ bất ngở

17 tháng 5 2017
vì người đó là người trên đảo nên =>người đó cũng nói đối mà nếu người đó nói đối thì người trên đảo nói thạt mà người dó cũng là người trên đảo =>người đó nói thật mà người đó nói thật thì người trên đỏa nói dối và lặp đi lặp lại 1 vòng tuần hoàn dài vô tận
17 tháng 5 2017
Nghịch lý là: Người đó nói dối.
(đây là câu hỏi của bạn tớ ) Tại một phiên tòa, thẩm phán ra phán quyết đối với người tử tù rằng anh ta sẽ bị treo cổ vào giữa trưa một ngày thường (từ thứ Hai đến thứ Sáu) trong tuần sau. Ngày hành quyết sẽ là một bất ngờ đối với người tử tù và anh ta chỉ có thể biết được khi cai ngục đến gõ cửa buồng ngay trước giờ ra pháp trường.Sau khi ngẫm nghĩ về bản án, người...
Đọc tiếp

(đây là câu hỏi của bạn tớ ) 

Tại một phiên tòa, thẩm phán ra phán quyết đối với người tử tù rằng anh ta sẽ bị treo cổ vào giữa trưa một ngày thường (từ thứ Hai đến thứ Sáu) trong tuần sau. Ngày hành quyết sẽ là một bất ngờ đối với người tử tù và anh ta chỉ có thể biết được khi cai ngục đến gõ cửa buồng ngay trước giờ ra pháp trường.

Sau khi ngẫm nghĩ về bản án, người tù tự kết luận rằng anh ta sẽ thoát chết. Lý luận của anh ta đưa ra như sau: Theo như bản án, ngày hành quyết sẽ hoàn toàn “bất ngờ” đối với anh ta. Như vậy anh ta sẽ không thể bị treo cổ vào ngày thứ 6 (ngày cuối cùng có thể hành quyết trong thời hạn 5 ngày) vì như vậy không bất ngờ chút nào. Tương tự, anh không thể bị treo cổ vào ngày thứ 5 (ngày cuối cùng trong thời hạn hành quyết 4 ngày – vì ngày thứ 6 không treo cổ được rồi nên 5-1 =4).  Cứ như vậy anh tiếp tục cách suy luận này và áp dụng cho các ngày còn lại trong tuần, và kết luận rằng mình chắc chắn sẽ không thể bị hành quyết. Anh ta liền vui vẻ quay trở về buồng ngục của mình hoàn toàn yên tâm đánh một giấc ngon lành. Vài ngày sau, cai ngục đến gõ cửa buồng anh ta vào trưa ngày thứ Tư,  và anh ta bị lôi ra pháp trường. Như vậy, suy luận của người tử tù này sai ở đâu ? 

1
6 tháng 3 2016

Đây là ngịch lí người tử tủ phải ko ? 

Zeno đã tạo ra 3 nghịch lý và cam kết rằng sau ít nhất 1.000 năm sau may ra mới có người giải được.Nghịch lý đầu tiên và cũng nổi tiếng nhất có tên "Achilles và chú rùa", hay cũng được mệnh danh là nghịch lý Zeno. Nghịch lý này được mô tả như sau:Trong một cuộc chạy đua, người chạy nhanh hơn không bao giờ có thể bắt kịp được kẻ chậm chạy trước. Kể từ khi xuất phát, người đuổi...
Đọc tiếp

Zeno đã tạo ra 3 nghịch lý và cam kết rằng sau ít nhất 1.000 năm sau may ra mới có người giải được.

Nghịch lý đầu tiên và cũng nổi tiếng nhất có tên "Achilles và chú rùa", hay cũng được mệnh danh là nghịch lý Zeno. Nghịch lý này được mô tả như sau:

Trong một cuộc chạy đua, người chạy nhanh hơn không bao giờ có thể bắt kịp được kẻ chậm chạy trước. Kể từ khi xuất phát, người đuổi theo trước hết phải đến được điểm mà kẻ bị đuổi bắt đầu chạy. Do đó, kẻ chạy chậm hơn luôn dẫn đầu". 

Theo đó, nếu Achilles và rùa chạy thi, rùa chạy là 10 mét trước thì cứ khi Achilles tới chỗ rùa đang đứng thì rùa đã đi thêm được một đoạn nữa giả sử là 1 mét và Achilles lại mất thêm thời gian đi tới vị trí mới anh phát hiện ra anh vẫn ở sau chú rùa 0,1 mét, 0,01 mét rồi 0,001 mét. Cứ thế, Achilles dù có tài năng đến mấy cũng không bao giờ bắt kịp chú rùa nhỏ bé.

2
11 tháng 7 2017

Theo đó, xét rằng vì khoảng cách giảm dần nên thời gian cần thiết để thực hiện di chuyển những khoảng cách đó cũng giảm dần. Vì thế mà tới một lúc nào đó, thời gian giảm đến 0 và Achiles sẽ bắt kịp chú rùa.

1 tháng 8 2017

hay tự mình trả lời câu hỏi của mình ha

📷Một sơ đồ Venn mô phỏng phép giao của hai tập hợp.Lý thuyết tập hợp là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng nào cũng có thể được đưa vào một tập hợp, song lý thuyết tập hợp được dùng nhiều cho các đối tượng phù hợp với toán học.Sự nghiên cứu lý thuyết tập hợp hiện đại do Cantor và Dedekind khởi xướng vào thập niên 1870. Sau khi khám phá ra...
Đọc tiếp

📷Một sơ đồ Venn mô phỏng phép giao của hai tập hợp.

Lý thuyết tập hợp là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng nào cũng có thể được đưa vào một tập hợp, song lý thuyết tập hợp được dùng nhiều cho các đối tượng phù hợp với toán học.

Sự nghiên cứu lý thuyết tập hợp hiện đại do Cantor và Dedekind khởi xướng vào thập niên 1870. Sau khi khám phá ra các nghịch lý trong lý thuyết tập không hình thức, đã có nhiều hệ tiên đề được đề nghị vào đầu thế kỷ thứ 20, trong đó có các tiên đề Zermelo–Fraenkel, với tiên đề chọn là nổi tiếng nhất.

Ngôn ngữ của lý thuyết tập hợp được dùng trong định nghĩa của gần như tất cả các đối tượng toán học, như hàm số, và các khái niệm lý thuyết tập hợp được đưa nhiều chương trình giảng dạy toán học. Các sự kiện cơ bản về tập hợp và phần tử trong tập hợp có thể được mang ra giới thiệu ở cấp tiểu học, cùng với sơ đồ Venn, để học về tập hợp các đối tượng vật lý thường gặp. Các phép toán cơ bản như hội và giao có thể được học trong bối cảnh này. Các khái niệm cao hơn như bản số là phần tiêu chuẩn của chương trình toán học của sinh viên đại học.

Lý thuyết tập hợp, được hình thức hóa bằng lôgic bậc nhất (first-order logic), là phương pháp toán học nền tảng thường dùng nhất. Ngoài việc sử dụng nó như một hệ thống nền tảng, lý thuyết tập hợp bản thân nó cũng là một nhánh của toán học, với một cộng đồng nghiên cứu tích cực. Các nghiên cứu mới nhất về lý thuyết tập hợp bao gồm nhiều loại chủ đề khác nhau, từ cấu trúc của dòng số thực đến nghiên cứu tính nhất quán của bản số lớn.

Mục lục

1Lịch sử

1.1Thế kỷ 19

1.220. Jahrhundert

2Khái niệm và ký hiệu cơ bản

2.1Quan hệ giữa các tập hợp

2.1.1Quan hệ bao hàm

2.1.2Quan hệ bằng nhau

2.2Các phép toán trên các tập hợp

3Ghi chú

4Liên kết ngoài

5Đọc thêm

Lịch sử[sửa | sửa mã nguồn]

📷Georg Cantor

Các chủ đề về toán học thường xuất hiện và phát triển thông qua sự tương tác giữa các nhà nghiên cứu. Tuy nhiên, lý tuyết tập hợp được tìm thấy năm 1874 bởi Georg Cantor thông qua bài viết: "On a Characteristic Property of All Real Algebraic Numbers".[1][2]

Thế kỷ 19[sửa | sửa mã nguồn]

📷Tập hợp như là một thu góp trong tư tưởng các đối tượng có quan hệ nào đó với nhau.
Cái trống là phần tử của tập hợp
Cuốn sách không phải là phần tử của tập hợp.

Lý thuyết tập hợp được sáng lập bởi Georg Cantor trong những năm 1874 đến năm 1897. Thay cho thuật ngữ "tập hợp", ban đầu ông ta đã sử dụng những từ như "biểu hiện" (inbegriff) hoặc "sự đa dạng" (Mannigfaltigkeit); Về tập hợp và Lý thuyết tập hợp, ông chỉ nói sau đó. Năm 1895, ông đã diễn tả định nghĩa sau:

Qua một "tập hợp", chúng ta hiểu là bất kỳ một tổng hợp M của một số vật thể m khác nhau được xác định rõ ràng trong quan điểm hoặc suy nghĩ của chúng ta (được gọi là "các phần tử" của M) thành một tổng thể.

Cantor phân loại các tập hợp, đặc biệt là những tập hợp vô hạn, theo Lực lượng của chúng. Đối với tập hợp hữu hạn, đây là số lượng các phần tử của chúng. Ông gọi hai tập hợp " có lực lượng bằng nhau" khi chúng được ánh xạ song ánh với nhau, tức là khi có một mối quan hệ một-một giữa các phần tử của chúng. Cái được định nghĩa là sự đồng nhất lực lượng là một quan hệ tương đương, và một lực lượng hay số phần tử của một tập hợp M theo Cantor, là lớp tương đương của các tập hợp có lực lượng bằng M. Ông là người đầu tiên quan sát thấy rằng có những lực lựong vô hạn khác nhau. Tập hợp các số tự nhiên, và tất cả các tập hợp có lực lượng bằng nó, được Cantor gọi là 'Tập hợp đếm được, tất cả các tập hợp vô hạn khác được gọi là tập hợp không đếm được.

Các kết quả quan trọng từ Cantor

Tập hợp của số tự nhiên, số hữu tỉ (lập luận chéo đầu tiên của Cantor) và số đại số là đếm được và có lực lượng bằng nhau.

Tập hợp số thực có lực lượng lớn hơn so với các số tự nhiên, đó là không đếm được (luận chéo thứ hai củaCantor).

Tập hợp của tất cả các tập hợp con của một tập hợp M luôn luôn có lực lượng lớn hơn là M , mà còn được gọi là định lý Cantor.

Từ bất kỳ hai tập hợp có ít nhất một tập hợp cùng lực lượng với một tập hợp con của tập hợp kia.

Có rất nhiều lực lượng của tập hợp không đếm được.

Cantor gọi Giả thiết continuum là "có một lực lượng ở giữa tập hợp các số tự nhiên và tập hợp các số thực " Ông đã cố gắng để giải quyết, nhưng không thành công. Sau đó nó bật ra rằng vấn đề này trên nguyên tắc không quyết định được.

Ngoài Cantor, Richard Dedekind là một nhà tiên phong quan trọng của lý thuyết về lý thuyết tập hợp. Ông đã nói về các "hệ thống" thay vì tập hợp và phát triển một cấu trúc lý thuyết tập hợp của các con số thực vào năm 1872[4], một số lượng lý thuyết xây dựng số thực [2] và 1888 nói về tiên đề hóa lý thuyết tập hợp các con số tự nhiên.[5]Ông là người đầu tiên tạo ra công thức tiên đề Axiom of extensionality của lý thuyết tập hợp.

Ngay từ năm 1889, Giuseppe Peano, người đã miêu tả tập hợp là các tầng lớp, đã tạo ra cách tính toán bằng công thức logic các tầng lớp đầu tiên làm cơ sở cho số học của ông với các tiên đề Peano, mà ông đã mô tả lần đầu tiên trong một ngôn ngữ lý thuyết tập hợp chính xác. Do đó ông đã phát triển cơ sở cho ngông ngữ công thức ngày nay của lý thuyết tập hợp và giới thiệu nhiều biểu tượng được phổ biến ngày nay, đặc biệt là ký hiệu phần tử {\displaystyle \in }📷, được đọc là là "phần tử của"[6]. Trong khi đó {\displaystyle \in }📷 là chữ viết thường của ε (epsilon) của từ ἐστί (tiếng Hy Lạp: "là").[7]

Gottlob Frege đã cố gắng đưa ra một lý giải lý thuyết tập hợp khác của lý thuyết về số học vào năm 1893. Bertrand Russell đã phát hiện ra mâu thuẫn của nó vào năm 1902, được biết đến như là Nghịch lý Russell. Sự mâu thuẫn này và các mâu thuẫn khác nảy sinh do sự thiết lập tập hợp không hạn chế, đó là lý do tại sao dạng thức ban đầu của lý thuyết tập hợp sau này được gọi là lý thuyết tập hợp ngây thơ. Tuy nhiên, định nghĩa của Cantor không có ý muốn nói tới một lý thuyết tập hợp ngây thơ như vậy, như chứng minh của ông về loại tất cả là Nichtmenge cho thấy bởi nghịch lý Cantor thứ hai [6].[8]

Học thuyết của Cantor về lý thuyết tập hợp hầu như không được công nhận bởi những người đương thời về vai trò quan trọng của nó, và không được coi là bước tiến cách mạng, mà đã bị một số các nhà toán học như Leopold Kronecker không chấp nhận. Thậm chí nhiều hơn, nó còn bị mang tiếng khi các nghịch lý được biết tới, ví dụ như Henri Poincaré, chế diễu, "Logic không còn hoàn toàn, bây giờ nó tạo ra những mâu thuẫn."

20. Jahrhundert[sửa | sửa mã nguồn]

Trong thế kỷ XX, những ý tưởng của Cantor tiếp tục chiếm ưu thế; đồng thời, trong Logic toán, một lý thuyết Axiomatic Quantum đã được thiết lập, qua đó có thể vượt qua các mâu thuẫn hiện thời.

Năm 1903/1908 Bertrand Russell phát triển Type theory của mình, trong đó tập hợp luôn luôn có một kiểu cao hơn các phần tử của chúng, do đó sự hình thành các tập hợp có vấn đề sẽ không thể xảy ra. Ông chỉ ra cách đầu tiên ra khỏi những mâu thuẫn và cho thấy trong "Principia Mathematica" của 1910-1913 cũng là một phần hiệu quả của Type theory ứng dụng. Cuối cùng, tuy nhiên, nó chứng tỏ là không thích hợp với lý thuyết tập hợp của Cantor và cũng không thể vượt qua được sự phức tạp của nó.

Tiên đề lý thuyết tập hợp được phát triển bởi Ernst Zermelo vào năm 1907 ngược lại dễ sử dụng và thành công hơn, trong đó schema of replacement của ông là cần thiết để bổ sung vào. Zermelo thêm nó vào hệ thống Zermelo-Fraenkel năm 1930, mà ông gọi tắt là hệ thống-ZF. Ông đã thiết kế nó cho Urelement mà không phải là tập hợp, nhưng có thể là phần tử của tập hợp và được xem như cái Cantor gọi là "đối tượng của quan điểm của chúng tôi." Lý thuyết tập hợp Zermelo-Fraenkel, tuy nhiên, theo ý tưởng Fraenkel là lý thuyết tập hợp thuần túy mà đối tượng hoàn toàn là các tập hợp.

Tuy nhiên, nhiều nhà toán học thay vì theo một tiên đề hợp lý lại chọn một lý thuyết tập hợp thực dụng, tránh tập hợp có vấn đề, chẳng hạn như những áp dụng của Felix Hausdorff1914 hoặc Erich Kamke từ năm 1928. Dần dần các nhà toán học ý thức hơn rằng lý thuyết tập hợp là một cơ bản không thể thiếu cho cấu trúc toán học. Hệ thống ZF chứng minh được trong thực hành, vì vậy ngày nay nó được đa số các nhà toán học công nhận là cơ sở của toán học hiện đại; không còn có mâu thuẫn có thể bắt nguồn từ hệ thống ZF. Tuy nhiên, sự không mâu thuẫn chỉ có thể được chứng minh cho lý thuyết tập hợp với tập hợp hữu hạn, chứ không phải cho toàn bộ hệ thống ZF, mà chứa lý thuyết tập hợp của Cantor với tập hợp vô hạn. Theo Gödel's incompleteness theorems năm 1931 một chứng minh về tính nhất quán về nguyên tắc là không thể được. Những khám phá Gödel chỉ là chương trình của Hilbert để cung cấp toán học và lý thuyết tập hợp vào một cơ sở tiên đề không mâu thuẫn được chứng minh, một giới hạn, nhưng không cản trở sự thành công của lý thuyết trong bất kỳ cách nào, vì vậy mà một khủng hoảng nền tảng của toán học, mà những người ủng hộ của Intuitionismus, trong thực tế không được cảm thấy.

Tuy nhiên, sự công nhận cuối cùng của lý thuyết tập hợp ZF trong thực tế trì hoãn trong một thời gian dài. Nhóm toán học với bút danh Nicolas Bourbaki đã đóng góp đáng kể cho sự công nhận này; họ muốn mô tả mới toán học đồng nhất dựa trên lý thuyết tập hợp và biến đổi nó vào năm 1939 tại các lãnh vực toán học chính thành công. Trong những năm 1960, nó trở nên phổ biến rộng rãi rằng, lý thuyết tập hợp ZF thích hợp là cơ sở cho toán học. Đã có một khoảng thời gian tạm thời trong đó lý thuyết số lượng đã được dạy ở tiểu học.

Song song với câu chuyện thành công của thuyết tập hợp, tuy nhiên, việc thảo luận về các tiên đề tập hợp vẫn còn lưu hành trong thế giới chuyên nghiệp. Nó cũng hình thành những lý thuyết tập hợp tiên đề thay thế khoảng năm 1937 mà không hướng theo Cantor và Zermelo-Fraenkel, nhưng dựa trên Lý thuyết kiểu (Type Theory) của Willard Van Orman Quine từ New Foundations (NF) của ông ta, năm 1940 lý thuyết tập hợp Neumann-Bernays-Godel, mà khái quát hóa ZF về các lớp (Class (set theory)), hay năm 1955, lý thuyết tập hợp Ackermann, khai triển mới định nghĩa tập hợp của Cantor.

Khái niệm và ký hiệu cơ bản[sửa | sửa mã nguồn]

Lý thuyết tập hợp bắt đầu với một quan hệ nhị phân cơ bản giữa một phần tử o và một tập hợp A. Nếu o là một thành viên (hoặc phần tử) của A, ký hiệu o ∈ A được sử dụng. Khi đó ta cũng nói rằng phần tử a thuộc tập hợp A. Vì các tập cũng là các đối tượng, quan hệ phần tử cũng có thể liên quan đến các tập.

Quan hệ giữa các tập hợp[sửa | sửa mã nguồn]

Quan hệ bao hàm[sửa | sửa mã nguồn]

Nếu tất cả các thành viên của tập A cũng là thành viên của tập B , thì A là một Tập hợp con của B , được biểu thị {\displaystyle A\subseteq B}📷, và tập hợp B bao hàm tập hợp A. Ví dụ, {1, 2} là một tập hợp con của {1, 2, 3}, và {2} cũng vậy, nhưng { 1, 4} thì không.

Quan hệ bằng nhau[sửa | sửa mã nguồn]

Hai tập hợp A và B được gọi là bằng nhau nếu A là tập hợp con của B và B cũng là tập hợp con của A, ký hiệu A = B.

Theo định nghĩa, mọi tập hợp đều là tập con của chính nó; tập rỗng là tập con của mọi tập hợp. Mọi tập hợp A không rỗng có ít nhất hai tập con là rỗng và chính nó. Chúng được gọi là các tập con tầm thường của tập A. Nếu tập con B của A khác với chính A, nghĩa là có ít nhất một phần tử của A không thuộc B thì B được gọi là tập con thực sự hay tập con chân chính của tập A.

Chú ý rằng 1 và 2 và 3 là các thành viên của tập {1, 2, 3}, nhưng không phải là tập con, và các tập con, chẳng hạn như {1}, không phải là thành viên của tập {1, 2, 3}.

Các phép toán trên các tập hợp[sửa | sửa mã nguồn]

Hợp (Union): Hợp của A và B là tập hợp gồm tất cả các phần tử thuộc ít nhất một trong hai tập hợp A và B, ký hiệu A {\displaystyle \cup }📷 B

Ta có A {\displaystyle \cup }📷 B = {x: x {\displaystyle \in }📷 A hoặc x {\displaystyle \in }📷 B}, hợp của {1, 2, 3} và {2, 3, 4} là tập {1, 2, 3, 4}.

Giao (Intersection): Giao của hai tập hợp A và B là tập hợp tất cả các phần tử vừa thuộc A, vừa thuộc B, ký hiệu A {\displaystyle \cap }📷 B

Ta có A {\displaystyle \cap }📷 B = {x: x {\displaystyle \in }📷 A và x {\displaystyle \in }📷 B}, giao của {1, 2, 3} và {2, 3, 4} là tập { 2, 3}.

Hiệu (Difference): Hiệu của tập hợp A với tập hợp B là tập hợp tất cả các phần tử thuộc A nhưng không thuộc B, ký hiệu {\displaystyle A\setminus B}📷

Ta có: A \ B = {x: x {\displaystyle \in }📷 A và x {\displaystyle \notin }📷 B}Lưu ý, A \ B {\displaystyle \neq }📷 B \ A

Phần bù (Complement): là hiệu của tập hợp con. Nếu A{\displaystyle \subset }📷B thì B \ A được gọi là phần bù của A trong B, ký hiệu CAB (hay CB A)

1
#ngontinh_review Tên: ĐÔNG CHÍTác giả: Ngưng LũngThể loại: Hiện đại, điều tra phá án, gương vỡ lại lành, sạch, sủng, HE Số chương: 60 chương + 10 phiên ngoại Tình trạng: Hoàn editLâu lắm mình mới tìm được một bộ vừa làm mưa làm gió bên Trung lại được đón chào nồng nhiệt bên Việt. Trước giờ ngôn tình trinh thám luôn được độc giả săn đón nhiều nhất vì nó có tính kích thích cao và...
Đọc tiếp

#ngontinh_review
Tên: ĐÔNG CHÍ
Tác giả: Ngưng Lũng
Thể loại: Hiện đại, điều tra phá án, gương vỡ lại lành, sạch, sủng, HE
Số chương: 60 chương + 10 phiên ngoại
Tình trạng: Hoàn edit

Lâu lắm mình mới tìm được một bộ vừa làm mưa làm gió bên Trung lại được đón chào nồng nhiệt bên Việt. Trước giờ ngôn tình trinh thám luôn được độc giả săn đón nhiều nhất vì nó có tính kích thích cao và thật sự khá hay. Sau khi đọc xong Đông Chí, quả thật mình rất mãn nguyện, không giống những bộ ngôn tình trinh thám khác là có nhiều vụ án mà Đông Chí chỉ có một vụ án duy nhất kéo từ đầu đến cuối truyện, bên cạnh đó sẽ phát sinh các vụ án khác nhưng đều có liên quan đến vụ án chính này.

Mở đầu câu chuyện là cảnh nữ chính Lục Yên trong lúc vội vã chạy đến bệnh viện vô tình va phải một người rất giống cô bạn thân cấp 3 tên Đặng Mạn đã chết nhiều năm, ngay sau khi va phải người đó, những chuyện kì lạ bắt đầu xảy ra với Lục Yên.

Cũng vào khoảng thời gian đó, bạn trai cũ của Lục Yên, người năm đó bị Lục Yên đá, Giang Thành Ngật trở về thành phố S. Hai người gặp lại nhau trong buổi họp lớp cấp 3. Ngoài mặt Giang Thành Ngật ra vẻ lạnh lùng không màng thế sự nhưng trong lòng thì bắt đầu không yên, vừa cay cú vì năm đó bị Lục Yên đá vừa nhớ thương cô 📷:v . Và sau khi có người nửa đêm đến nhà Lục Yên dọa cô mà Giang Thành Ngật bắt đầu để cô “ở trọ” trong nhà mình. Cuộc sống ở chung của hai người bắt đầu.

Cùng lúc đó, những cái chết lần lượt xuất hiện, đầu tiên là cái chết của đồng nghiệp Lục Yên, tiếp theo là cái chết của nữ phụ Đinh Tịnh (Cùng học cấp 3 với nam nữ chính), từ hai cái chết đó Lục Yên càng ngày càng tin chắc vào nghi ngờ của mình, năm đó Đặng Mạn thật sự tự sát hay đã có ai sát hại cô ấy? Càng tìm hiểu thì lại càng rối loạn, không chỉ hai cái chết kể trên, lại còn đào ra được thêm 2 người đã chết nữa, mà tất cả lại đều xoay quanh hai chữ “Đông Chí”.

Đông Chí ở trong truyện không chỉ là một trong hai mươi tư tiết khí trong nông lịch theo lịch Trung Quốc cổ đại mà còn là tên một trang web bói bài Tarot do nữ phụ Đinh Tịnh lập. Không ngoa khi nói Đông Chí là một trong tích truyện tam đại quỷ của Trung Quốc (Gồm: Đông Chí, Trung Nguyên, Thanh Minh). Ngay từ cái tên Đông Chí chúng ta đã thấy nó đầy u ám và kì bí. Cũng như bộ truyện này, càng đọc càng bất ngờ, càng phải rùng mình.

Bốn người chết, tưởng chừng không chút liên quan nhưng lại liên kết cực kỳ chặt chẽ với nhau, dường như mọi người cứ ngỡ vụ án này chỉ là án liên hoàn đơn giản nhưng không ngờ nó đã kéo dài từ tận 8 năm trước cho đến thời điểm hiện tại.

Nhưng cũng nhờ những vụ án này mà Lục Yên và Giang Thành Ngật lại càng được kéo gần nhau hơn, lúc hai người làm hòa cũng là lúc chân tướng lộ rõ từng bước một. Về vấn đề tình cảm bộ này khá ngọt ngào, tuy gắn mác gương vỡ lại lành nhưng chẳng ngược chút nào, sủng ngọt có, có chút thịt vụn này, Giang Thành Ngật ngoài mặt lạnh lùng nhưng lại là sắc lang chính hiệu, hồi cấp 3 là anh tán đổ Lục Yên, coi như Lục Yên như nữ thần đời mình, đến nỗi cô ngủ chảy cả nước dãi anh còn gật đầu khen dễ thương 📷:v

Còn Lục Yên, một cô gái xinh đẹp lại chăm chỉ, không bánh bèo, tính cách rất quyết đoán, năm đó đề nghị chia tay Giang Thành Ngật cũng có lý do cả, làm đau người mình yêu cũng tự làm đau mình, thật sự do quá sợ hãi và đau khổ nên mới đề nghị chia tay. Cái này các bạn đọc sẽ rõ, mình nói ra lại mất hay.

Còn về phần vụ án, có lẽ chỉ có một vụ duy nhất nên tác giả rất chú trọng và tốn sức tìm hiểu các thứ chuyên ngành khác để áp dụng vào truyện, tác giả còn rất giỏi trong việc đánh lừa độc giả, khi bạn nghĩ người này là hung thủ sẽ tác giả lại lái ngay hướng suy nghĩ của bạn sang người khác, khi tất cả nghi vấn đều hướng vào một người thì chưa chắc người đó đã là hung thủ. Lúc đọc truyện này thật sự mình phải khen tác giả một câu là tổ lái quá mượt, trơn tru logic không bị lệch tay lái 📷:)))

Nếu những bộ trinh thám khác có thể đoán được hung thủ qua vài 3 câu phân tích thì bộ này lại khác, càng đọc những lời phân tích của công an và chuyên gia tâm lý mình càng bối rối và khó suy đoán hơn, ngoài việc chuyên gia tâm lý phân tích rất cặn kẽ và nhiều lúc khiến đứa lười động não như mình khó hiểu ra thì đọc 2 3 lần sẽ thấy rất đúng.

Để đến lúc bắt được hung thủ, mình vẫn còn hơi nghi ngờ, còn sợ tác giả lại tổ lái tiếp 📷:v Nhưng không, hung thủ này cũng khiến mình vô cùng vô cùng bất ngờ. Một người tưởng chừng mờ nhạt như một phông nền lại biến thành hung thủ tội phạm IQ cao, về sau tác giả giải thích từng lý do, nguyên nhân để xác nhận người này là hung thủ thì mình cũng phải gật gù tán thưởng là quá hợp lý.

Hình như đã nói hơi nhiều rồi, mình xin tạm dừng và tổng kết lại như sau: Truyện quá hay, càng đọc càng hứng thú, vì nó gợi sự tò mò và buộc bạn phải suy đoán. Truyện HE, có ít thịt vụn mà cũng như không vụn, ngọt ngào có đủ, phá án thì cũng quá ổn luôn. Edit thì siêu siêu mượt. Nhiệt liệt đề cử các chị mẹ cùng nhảy ♥

Review by Lạc Dung


0
Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).Cụm từ "số học" cũng được...
Đọc tiếp

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.

Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).

Cụm từ "số học" cũng được sử dụng để nói đến lý thuyết số. Đây là cụm từ không còn được sử dụng rộng rãi nữa. Tuy nhiên, nó vẫn còn hiện diện trong tên của một số lĩnh vực toán học (hàm số học, số học đường cong elliptic, lý thuyết căn bản của số học). Việc sử dụng cụm từ số học ở đây không nên nhầm lẫn với số học sơ cấp.

Mục lục

1Các lĩnh vực

1.1Lý thuyết số sơ cấp

1.2Lý thuyết số giải tích

1.3Lý thuyết số đại số

1.4Lý thuyết số hình học

1.5Lý thuyết số tổ hợp

1.6Lý thuyết số máy tính

2Lịch sử

2.1Lý thuyết số thời kì Vedic

2.2Lý thuyết số của người Jaina

2.3Lý thuyết số Hellenistic

2.4Lý thuyết số Ấn Độ cổ điển

2.5Lý thuyết số của người Hồi giáo

2.6Lý thuyết số châu Âu ban đầu

2.7Mở đầu lý thuyết số hiện đại

2.8Lý thuyết số về số nguyên tố

2.9Các thành tựu trong thế kỉ 19

2.10Các thành tựu trong thế kỉ 20

3Danh ngôn

4Tham khảo

5Liên kết ngoài

Các lĩnh vực[sửa | sửa mã nguồn]

Lý thuyết số sơ cấp[sửa | sửa mã nguồn]

Trong lý thuyết số sơ cấp, các số nguyên được nghiên cứu mà không cần các kĩ thuật từ các lĩnh vực khác của toán học. Nó nghiên cứu các vấn đề về chia hết, cách sử dụng thuật toán Euclid để tìm ước chung lớn nhất, phân tích số nguyên thành thừa số nguyên tố, việc nghiên cứu các số hoàn thiện và đồng dư.

Rất nhiều vấn đề trong lý thuyết số có thể phát biểu dưới ngôn ngữ sơ cấp, nhưng chúng cần những nghiên cứu sâu sắc và những tiếp cận mới bên ngoài lĩnh vực lý thuyết số để giải quyết.

Một số ví dụ:

Giả thuyết Goldbach nói về việc biểu diễn các số chẵn thành tổng của hai số nguyên tố.

Giả thuyết Catalan (bây giờ là định lý Mihăilescu) nói về các lũy thừa nguyên liên tiếp.

Giả thuyết số nguyên tố sinh đôi nói rằng có vô hạn số nguyên tố sinh đôi

Giả thuyết Collazt nói về một dãy đệ quy đơn giản

Định lý lớn Fermat (nêu lên vào năm 1637, đến năm 1994 mới được chứng minh) nói rằng phương trình {\displaystyle x^{n}+y^{n}=z^{n}}📷 không có nghiệm nguyên khác không với n lớn hơn 2.

Lý thuyết về phương trình Diophantine thậm chí đã được chứng minh là không có phương pháp chung đề giải (Xem Bài toán thứ 10 của Hilbert)

Lý thuyết số giải tích[sửa | sửa mã nguồn]

Lý thuyết giải tích số sử dụng công cụ giải tích và giải tích phức để giải quyết các vần đề về số nguyên. Định lý số nguyên tố và giả thuyết Riemann là các ví dụ. Bài toán Waring(biểu diễn một số nguyên cho trước thành tổng các bình phương, lập phương, v.v...), giả thuyết số nguyên tố sinh đôi và giả thuyết Goldbach cũng đang bị tấn công bởi các phương pháp giải tích. Chứng minh về tính siêu việt của các hằng số toán học, như là π hay e, cũng được xếp vào lĩnh vực lý thuyết giải tích số. Trong khi những phát biểu về các số siêu việt dường như đã bị loại bỏ khỏi việc nghiên cứu về các số nguyên, chúng thực sự nghiên cứu giá trị của các đa thức với hệ số nguyên tại, ví dụ, e; chúng cũng liên quan mật thiết với lĩnh vực xấp xỉ Diophantine, lĩnh vực nghiên cứu một số thực cho trước có thể xấp xỉ bởi một số hữu tỉ tốt tới mức nào.

Lý thuyết số đại số[sửa | sửa mã nguồn]

Trong Lý thuyết số đại số, khái niệm của một số được mở rộng thành các số đại số, tức là các nghiệm của các đa thức với hệ số nguyên. Những thứ này bao gồm những thành phần tương tự với các số nguyên, còn gọi là số nguyên đại số. Với khái niệm này, những tính chất quen thuộc của số nguyên (như phân tích nguyên tố duy nhất) không còn đúng. Lợi thế của những công cụ lý thuyết - Lý thuyết Galois, group cohomology, class field theory, biểu diễn nhóm và hàm L - là nó cho phép lấy lại phần nào trật tự của lớp số mới.

Rất nhiều vấn đề lý thuyết số có thể được giải quyết một cách tốt nhất bởi nghiên cứu chúng theo modulo p với mọi số nguyên tố p (xem các trường hữu hạn). Đây được gọi là địa phương hóa và nó dẫn đến việc xây dựng các số p-adic; lĩnh vực nghiên cứu này được gọi là giải tích địa phương và nó bắt nguồn từ lý thuyết số đại sô.

Lý thuyết số hình học[sửa | sửa mã nguồn]

Lý thuyết số hình học (cách gọi truyền thống là (hình học của các số) kết hợp tất cả các dạng hình học. Nó bắt đầu với định lý Minkowski về các điểm nguyên trong các tập lồi và những nghiên cứu về sphere packing.

Lý thuyết số tổ hợp[sửa | sửa mã nguồn]

Lý thuyết số tổ hợp giải quyết các bài toán về lý thuyết số mà có tư tưởng tổ hợp trong công thức hoặc cách chứng minh của nó. Paul Erdős là người khởi xướng chính của ngành lý thuyết số này. Những chủ đề thông thường bao gồm hệ bao, bài toán tổng-zero, rất nhiều restricted sumset và cấp số cộng trong một tập số nguyên. Các phương pháp đại số hoặc giải tích rất mạnh trong những lĩnh vực này.

Lý thuyết số máy tính[sửa | sửa mã nguồn]

Lý thuyết số máy tính nghiên cứu các thuật toán liên quan đến lý thuyết số. Những thuật toán nhanh chóng để kiểm tra tính nguyên tố và phân tích thừa số nguyên tố có những ứng dụng quan trọng trong mã hóa.

Lịch sử[sửa | sửa mã nguồn]

Lý thuyết số thời kì Vedic[sửa | sửa mã nguồn]

Các nhà toán học Ấn Độ đã quan tâm đến việc tìm nghiệm nguyên của phương trình Diophantine từ thời kì Vedic. Những ứng dụng sớm nhất vào hình học của phương trình Diophantine có thể tìm thấy trong kinh Sulba, được viết vào khoảng giữa thế kỉ thứ 8 và thế kỉ thứ 6 trước Công nguyên. Baudhayana (năm 800 TCN) tìm thấy hai tập nghiệm nguyên dương của một hệ các phương trình Diophantine, và cũng sử dụng hệ phương trình Diophantine với tới bốn ẩn. Apastamba (năm 600) sử dụng hệ phương trình Diophantine với tới năm ẩn.

Lý thuyết số của người Jaina[sửa | sửa mã nguồn]

Ở Ấn Độ, các nhà toán học Jaina đã phát triển lý thuyết số có hệ thống đầu tiên từ thế kỉ thứ 4 trước Công Nguyên tới thế kỉ thứ 2. Văn tự Surya Prajinapti (năm 400 TCN) phân lớp tất cả các số thành ba tập: đếm được, không đếm được và vô hạn. Mỗi tập này lại được phân thành ba cấp:

Đếm được: thấp nhất, trung bình, và cao nhất.

Không đếm được: gần như không đếm được, thật sự không đếm được, và không đếm được một cách không đếm được.

Vô hạn: gần như vô hạn, thật sự vô hạn, vô hạn một cách vô hạn

Những người Jain là những người đầu tiên không chấp nhận ý tưởng các vô hạn đều như nhau. Họ nhận ra năm loại vô hạn khác nhau: vô hạn theo một hoặc hai hướng (một chiều), vô hạn theo diện tích (hai chiều), vô hạn mọi nơi (ba chiều), và vô hạn liên tục (vô số chiều).

Số đếm được cao nhất N của người Jain tương ứng với khái niệm hiện đại aleph-không {\displaystyle \aleph _{0}}📷 (cardinal number của tập vô hạn các số nguyên 1,2,...), the smallest cardinal transfinite number. Người Jain cũng định nghĩa toàn bộ hệ thống các cardinal number, trong đó {\displaystyle \aleph _{0}}📷 là nhỏ nhất.

Trong công trình của người Jain về lý thuyết tập hợp, họ phân biệt hai loại transfinite number cơ bản. Ở cả lĩnh vực vật lý và bản thể học (ontology), sự khác nhau được tạo ra giữa asmkhyata và ananata, giữa vô hạn bị chặn ngặt và vô hạn bị chặn lỏng.

Lý thuyết số Hellenistic[sửa | sửa mã nguồn]

Lý thuyết số là một đề tài ưa thích của các nhà toán học Hellenistic ở Alexandria, Ai Cập từ thế kỉ thứ 3 sau Công Nguyên. Họ đã nhận thức được khái niệm phương trình Diophantine trong rất nhiều trường hợp đặc biệt. Nhà toán học Hellenistic đầu tiên nghiên cứu những phương trình này là Diophantus.

Diophantus cũng đã tìm kiếm một phương pháp để tìm nghiệm nguyên của các phương trình vô định tuyến tính, những phương trình mà thiếu điều kiện đủ để có một tập duy nhất các nghiệm phân biệt. Phương trình {\displaystyle x+y=5}📷 là một phương trình như vậy. Diophantus đã khám phá ra nhiều phương trình vô định có thể biến đổi thành các dạng đã biết mặc dù thậm chí còn không biết được nghiệm cụ thể.

Lý thuyết số Ấn Độ cổ điển[sửa | sửa mã nguồn]

Phương trình Diophantine đã được nghiên cứu một cách sâu sắc bởi các nhà toán học Ân Độ trung cổ. Họ là những người đầu tiên nghiên cứu một cách có hệ thống các phương pháp tìm nghiệm nguyên của phương trình Diophantine. Aryabhata (499) là người đầu tiên tìm ra dạng nghiệm tổng quát của phương trình Diophantine tuyến tính {\displaystyle ay+bx=c}📷, được ghi trong cuốn Aryabhatiya của ông. Thuật toán kuttaka này được xem là một trong những cống hiến quan trọng nhất của Aryabhata trong toán học lý thuyết, đó là tìm nghiệm của phương trình Diophantine bằng liên phân số. Aryabhata đã dùng kĩ thuật này để tìm nghiệm nguyên của các hệ phương trình Diophantine, một bài toán có ứng dụng quan trọng trong thiên văn học. Ông cũng đã tìm ra nghiệm tổng quát đối với phương trình tuyến tính vô định bằng phương pháp này.

Brahmagupta vào năm 628 đã nắm được những phương trình Diophantine phức tạp hơn. Ông sử dụng phương pháp chakravala để giải phương trình Diophantine bậc hai, bao gồm cả các dạng của phương trình Pell, như là {\displaystyle 61x^{2}+1=y^{2}}📷. Cuốn Brahma Sphuta Siddhanta của ông đã được dịch sang tiếng Ả Rập vào năm 773 và sau đó được dịch sang tiếng Latin vào năm 1126. Phương trình {\displaystyle 61x^{2}+1=y^{2}}📷 sau đó đã được chuyển thành một bài toán vào năm 1657 bởi nhà toán học người Pháp Pierre de Fermat. Leonhard Euler hơn 70 năm sau đã tìm được nghiệm tổng quát đối với trường hợp riêng này của phương trình Pell, trong khi nghiệm tổng quát của phương trình Pell đã được tìm ra hơn 100 năm sau đó bởi Joseph Louis Lagrange vào 1767. Trong khi đó, nhiều thế kỉ trước, nghiệm tổng quát của phương trình Pell đã được ghi lại bởi Bhaskara II vào 1150, sử dụng một dạng khác của phương pháp chakravala. Ông cũng đã sử dụng nó để tìm ra nghiệm tổng quát đối với các phương trình vô định bậc hai và phương trình Diophantine bậc hai khác. Phương pháp chakravala của Bhaskara dùng để tìm nghiệm phương trình Pell đơn giản hơn nhiều so với phương pháp mà Lagrange sử dụng 600 năm sau đó. Bhaskara cũng đã tìm được nghiệm của các phương trình vô định bậc hai, bậc ba, bốn và cao hơn. Narayana Pandit đã cải tiến phương pháp chakravala và tìm thêm được các nghiệm tổng quát hơn đối với các phương trình vô định bậc hai và cao hơn khác.

Lý thuyết số của người Hồi giáo[sửa | sửa mã nguồn]

Từ thế kỉ 9, các nhà toán học Hồi giáo đã rất quan tâm đến lý thuyết số. Một trong những nhà toán học đầu tiên này là nhà toán học Ả Rập Thabit ibn Qurra, người đã khám phá ra một định lý cho phép tìm các cặp số bạn bè, tức là các số mà tổng các ước thực sự của số này bằng số kia. Vào thế kỉ 10, Al-Baghdadi đã nhìn vào một ít biến đổi trong định lý của Thabit ibn Qurra.

Vào thế kỉ 10, al-Haitham có thể là người đầu tiên phân loại các số hoàn hảo chẵn (là các số mà tổng các ước thực sự của nó bằng chính nó) thành các số có dạng {\displaystyle 2^{k-1}(2^{k}-1)}📷trong đó {\displaystyle 2^{k}-1}📷 là số nguyên tố. Al-Haytham cũng là người đầu tiên phát biểu định lý Wilson (nói rằng p là số nguyên tố thì {\displaystyle 1+(p-1)!}📷 chia hết cho p). Hiện không rõ ông ta có biết cách chứng minh nó không. Định lý có tên là định lý Wilson vì căn cứ theo một lời chú thích của Edward Waring vào năm 1770 rằng John Wilson là người đầu tiên chú ý đến kết quả này. Không có bằng chứng nào chứng tỏ John Wilson đã biết cách chứng minh và gần như hiển nhiên là Waring cũng không. Lagrange đã đưa ra chứng minh đầu tiên vào 1771.

Các số bạn bè đóng vai trò quan trọng trong toán học của người Hồi giáo. Vào thế kỉ 13, nhà toán học Ba Tư Al-Farisi đã đưa ra một chứng minh mới cho định lý của Thabit ibn Qurra, giới thiệu một ý tưởng mới rất quan trọng liên quan đến phương pháp phân tích thừa số và tổ hợp. Ông cũng đưa ra cặp số bạn bè 17296, 18416 mà người ta vẫn cho là của Euler, nhưng chúng tao biết rằng những số này còn được biết đến sớm hơn cả al-Farisi, có thể bởi chính Thabit ibn Qurra. Vào thế kỉ 17, Muhammad Baqir Yazdi đưa ra cặp số bạn bè 9.363.584 và 9.437.056 rất nhiều năm trước khi Euler đưa ra.

Lý thuyết số châu Âu ban đầu[sửa | sửa mã nguồn]

Lý thuyết số bắt đầu ở Châu Âu vào thế kỉ 16 và 17, với François Viète, Bachet de Meziriac, và đặc biệt là Fermat, mà phương pháp lùi vô hạn của ông là chứng minh tổng quát đầu tiên của phương trình Diophantine. Định lý lớn Fermat được nêu lên như là một bài toán vào năm 1637, và không có lời giải cho đến năm 1994. Fermat cũng nêu lên bài toán {\displaystyle 61x^{2}+1=y^{2}}📷 vào năm 1657.

Vào thế kỉ 18, Euler và Lagrange đã có những cống hiến quan trọng cho lý thuyết số. Euler đã làm một vài công trình về lý thuyết giải tích số, và tình được một nghiệm tổng quát của phương trình {\displaystyle 61x^{2}+1=y^{2}}📷, mà Fermat nêu thành bài toán. Lagrange đã tìm được một nghiệm của phương trình Pell tổng quát hơn. Euler và Lagrange đã giải những phương trình Pell này bằng phương pháp liên phân số, mặc dù nó còn khó hơn phương pháp chakravala của Ấn Độ.

Mở đầu lý thuyết số hiện đại[sửa | sửa mã nguồn]

Khoảng đầu thế kỉ 19 các cuốn sách của Legendre (1798), và Gauss kết hợp thành những lý thuyết có hệ thống đầu tiên ở châu Âu. Cuốn Disquisitiones Arithmeticae (1801) có thể nói là đã mở đầu lý thuyết số hiện đại.

Sự hình thành lý thuyết đồng dư bắt đầu với cuốn Disquisitiones của Gauss. Ông giới thiệu ký hiệu

{\displaystyle a\equiv b{\pmod {c}},}📷

và đã khám phá ra hầu hết trong lĩnh vực này. Chebyshev đã xuất bản vào năm 1847 một công trình bằng tiếng Nga về chủ đề này, và ở Pháp Serret đã phổ biến nó.

Bên cạnh những công trình tổng kết trước đó, Legendre đã phát biểu luật tương hỗ bậc hai. Định lý này, được khám phá ra bởi qui nạp và được diễn đạt bởi Euler, đã được chứng minh lần đầu tiên bởi Legendre trong cuốn Théorie des Nombres của ông (1798) trong những trường hợp đặc biệt. Độc lập với Euler và Legendre, Gauss đã khám phá ra định luật này vào khoảng năm 1795, và là người đầu tiên đưa ra chứng minh tổng quát. Những người cũng có cống hiến quan trọng: Cauchy; Dirichlet với cuốn Vorlesungen über Zahlentheorie kinh điển; Jacobi, người đã đưa ra ký hiệu Jacobi; Liouville, Zeller (?), Eisenstein, Kummer, và Kronecker. Lý thuyết này đã được mở rộng để bao gồm biquadratic reciprocity (Gauss, Jacobi những người đầu tiên chứng minh luật tương hỗ bậc ba, và Kummer).

Gauss cũng đã đưa ra biểu diễn các số thành các dạng bậc hai cơ số hai.

Lý thuyết số về số nguyên tố[sửa | sửa mã nguồn]

Một chủ đề lớn và lặp đi lặp lại trong lý thuyết số đó là nghiên cứu về sự phân bố số nguyên tố. Carl Fiedrich Gauss đã dự đoán kết quả của định lý số nguyên tố khi còn là học sinh trung học.

Chebyshev (1850) đưa ra các chặn cho số số nguyên tố giữa hai giới hạn cho trước. Riemann giới thiệu giải tích phức thành lý thuyết về hàm zeta Riemann. Điều này đã dẫn đến mối quan hệ giữa các số không của hàm zeta và sự phân bố số nguyên tố, thậm chí dẫn tới một chứng minh cho định lý số về số nguyên tố độc lập với Hadamard và de la Vallée Poussin vào năm 1896. Tuy nhiên, một chứng minh sơ cấp đã được đưa ra sau đó bởi Paul Erdős và Atle Selberg vào năm 1949. Ở đây sơ cấp nghĩa là không sử dụng kĩ thuật giải tích phức; tuy nhiên chứng minh vẫn rất đặc biệt và rất khó. Giả thuyết Riemann, đưa ra những thông tin chính xác hơn, vẫn còn là một câu hỏi mở.

Các thành tựu trong thế kỉ 19[sửa | sửa mã nguồn]

Cauchy, Pointsot (1845), Lebesgue (1859, 1868) và đặc biệt là Hermite đã có những cống hiến đối với lĩnh vực này. Trong lý thuyết về các ternary form Eisenstein đã trở thành người đi đầu, và với ông và H. J. S. Smith đó đúng là một bước tiến quan trọng trong lý thuyết về các dạng. Smith đã đưa ra một sự phân loại hoàn chỉnh về các ternary form bậc hai, và mở rộng những nghiên cứu của Gauss về các dạng bậc hai thực (real quadratic form) thành các dạng phức (complex form). Những nghiên cứu về biểu diễn các số thành tổng của 4, 5, 6, 6, 8 bình phương đã được phát triển bởi Eisenstein và lý thuyết này đã được hoàn chỉnh bởi Smith.

Dirichlet là người đầu tiên thuyết trình về lĩnh vực này ở một trường đại học ở Đức. Một trong những cống hiến của ông là sự mở rộng của Định lý lớn Fermat:

{\displaystyle x^{n}+y^{n}\neq z^{n},(x,y,z\neq 0,n>2)}📷

mà Euler và Legendre đã chứng minh cho n = 3, 4 (và từ đó suy ra cho các bội của 3 và 4). Dirichlet đã chỉ ra rằng:{\displaystyle x^{5}+y^{5}\neq az^{5}}📷. Một số nhà toán học Pháp là Borel, Poincaré, những hồi ký của họ rất lớn và có giá trị; Tannery và Stieltjes. Một số người có những cống hiến hàng đầu ở Đức là Kronecker, Kummer, Schering, Bachmann, và Dedekind. Ở Austria cuốn Vorlesungen über allgemeine Arithmetik của Stolz (1885-86) và ở Anh cuốn Lý thuyết số của Mathew (Phần I, 1892) là các công trình tổng quát rất có giá trị. Genocchi, Sylvester, và J. W. L. Glaisher cũng đã có những cống hiến cho lý thuyết này.

Các thành tựu trong thế kỉ 20[sửa | sửa mã nguồn]

Những nhà toán học lớn trong lý thuyết số thế kỉ 20 bao gồm Paul Erdős, Gerd Faltings, G. H. Hardy, Edmund Landau, John Edensor Littlewood, Srinivasa Ramanujan và André Weil.

Các cột mốc trong lý thuyết số thế kỉ 20 bao gồm việc chứng minh Định lý lớn Fermat bởi Andrew Wiles vào năm 1994 và chứng minh Giả thuyết Taniyama–Shimura vào năm 1999

Danh ngôn[sửa | sửa mã nguồn]

Toán học là nữ hoàng của các khoa học và lý thuyết số là nữ hoàng của toán học. — Gauss

Chúa sinh ra các số nguyên, và phần việc còn lại là của con người. — Kronecker

Tôi biết các con số rất đẹp đẽ. Nếu chúng không đẹp, thì chẳng có thứ gì đẹp.— Erdős

0
Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).Cụm từ "số học" cũng được...
Đọc tiếp

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.

Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).

Cụm từ "số học" cũng được sử dụng để nói đến lý thuyết số. Đây là cụm từ không còn được sử dụng rộng rãi nữa. Tuy nhiên, nó vẫn còn hiện diện trong tên của một số lĩnh vực toán học (hàm số học, số học đường cong elliptic, lý thuyết căn bản của số học). Việc sử dụng cụm từ số học ở đây không nên nhầm lẫn với số học sơ cấp.

Mục lục

1Các lĩnh vực

1.1Lý thuyết số sơ cấp

1.2Lý thuyết số giải tích

1.3Lý thuyết số đại số

1.4Lý thuyết số hình học

1.5Lý thuyết số tổ hợp

1.6Lý thuyết số máy tính

2Lịch sử

2.1Lý thuyết số thời kì Vedic

2.2Lý thuyết số của người Jaina

2.3Lý thuyết số Hellenistic

2.4Lý thuyết số Ấn Độ cổ điển

2.5Lý thuyết số của người Hồi giáo

2.6Lý thuyết số châu Âu ban đầu

2.7Mở đầu lý thuyết số hiện đại

2.8Lý thuyết số về số nguyên tố

2.9Các thành tựu trong thế kỉ 19

2.10Các thành tựu trong thế kỉ 20

3Danh ngôn

4Tham khảo

5Liên kết ngoài

Các lĩnh vực[sửa | sửa mã nguồn]

Lý thuyết số sơ cấp[sửa | sửa mã nguồn]

Trong lý thuyết số sơ cấp, các số nguyên được nghiên cứu mà không cần các kĩ thuật từ các lĩnh vực khác của toán học. Nó nghiên cứu các vấn đề về chia hết, cách sử dụng thuật toán Euclid để tìm ước chung lớn nhất, phân tích số nguyên thành thừa số nguyên tố, việc nghiên cứu các số hoàn thiện và đồng dư.

Rất nhiều vấn đề trong lý thuyết số có thể phát biểu dưới ngôn ngữ sơ cấp, nhưng chúng cần những nghiên cứu sâu sắc và những tiếp cận mới bên ngoài lĩnh vực lý thuyết số để giải quyết.

Một số ví dụ:

Giả thuyết Goldbach nói về việc biểu diễn các số chẵn thành tổng của hai số nguyên tố.

Giả thuyết Catalan (bây giờ là định lý Mihăilescu) nói về các lũy thừa nguyên liên tiếp.

Giả thuyết số nguyên tố sinh đôi nói rằng có vô hạn số nguyên tố sinh đôi

Giả thuyết Collazt nói về một dãy đệ quy đơn giản

Định lý lớn Fermat (nêu lên vào năm 1637, đến năm 1994 mới được chứng minh) nói rằng phương trình {\displaystyle x^{n}+y^{n}=z^{n}}📷 không có nghiệm nguyên khác không với n lớn hơn 2.

Lý thuyết về phương trình Diophantine thậm chí đã được chứng minh là không có phương pháp chung đề giải (Xem Bài toán thứ 10 của Hilbert)

Lý thuyết số giải tích[sửa | sửa mã nguồn]

Lý thuyết giải tích số sử dụng công cụ giải tích và giải tích phức để giải quyết các vần đề về số nguyên. Định lý số nguyên tố và giả thuyết Riemann là các ví dụ. Bài toán Waring(biểu diễn một số nguyên cho trước thành tổng các bình phương, lập phương, v.v...), giả thuyết số nguyên tố sinh đôi và giả thuyết Goldbach cũng đang bị tấn công bởi các phương pháp giải tích. Chứng minh về tính siêu việt của các hằng số toán học, như là π hay e, cũng được xếp vào lĩnh vực lý thuyết giải tích số. Trong khi những phát biểu về các số siêu việt dường như đã bị loại bỏ khỏi việc nghiên cứu về các số nguyên, chúng thực sự nghiên cứu giá trị của các đa thức với hệ số nguyên tại, ví dụ, e; chúng cũng liên quan mật thiết với lĩnh vực xấp xỉ Diophantine, lĩnh vực nghiên cứu một số thực cho trước có thể xấp xỉ bởi một số hữu tỉ tốt tới mức nào.

Lý thuyết số đại số[sửa | sửa mã nguồn]

Trong Lý thuyết số đại số, khái niệm của một số được mở rộng thành các số đại số, tức là các nghiệm của các đa thức với hệ số nguyên. Những thứ này bao gồm những thành phần tương tự với các số nguyên, còn gọi là số nguyên đại số. Với khái niệm này, những tính chất quen thuộc của số nguyên (như phân tích nguyên tố duy nhất) không còn đúng. Lợi thế của những công cụ lý thuyết - Lý thuyết Galois, group cohomology, class field theory, biểu diễn nhóm và hàm L - là nó cho phép lấy lại phần nào trật tự của lớp số mới.

Rất nhiều vấn đề lý thuyết số có thể được giải quyết một cách tốt nhất bởi nghiên cứu chúng theo modulo p với mọi số nguyên tố p (xem các trường hữu hạn). Đây được gọi là địa phương hóa và nó dẫn đến việc xây dựng các số p-adic; lĩnh vực nghiên cứu này được gọi là giải tích địa phương và nó bắt nguồn từ lý thuyết số đại sô.

Lý thuyết số hình học[sửa | sửa mã nguồn]

Lý thuyết số hình học (cách gọi truyền thống là (hình học của các số) kết hợp tất cả các dạng hình học. Nó bắt đầu với định lý Minkowski về các điểm nguyên trong các tập lồi và những nghiên cứu về sphere packing.

Lý thuyết số tổ hợp[sửa | sửa mã nguồn]

Lý thuyết số tổ hợp giải quyết các bài toán về lý thuyết số mà có tư tưởng tổ hợp trong công thức hoặc cách chứng minh của nó. Paul Erdős là người khởi xướng chính của ngành lý thuyết số này. Những chủ đề thông thường bao gồm hệ bao, bài toán tổng-zero, rất nhiều restricted sumset và cấp số cộng trong một tập số nguyên. Các phương pháp đại số hoặc giải tích rất mạnh trong những lĩnh vực này.

Lý thuyết số máy tính[sửa | sửa mã nguồn]

Lý thuyết số máy tính nghiên cứu các thuật toán liên quan đến lý thuyết số. Những thuật toán nhanh chóng để kiểm tra tính nguyên tố và phân tích thừa số nguyên tố có những ứng dụng quan trọng trong mã hóa.

Lịch sử[sửa | sửa mã nguồn]

Lý thuyết số thời kì Vedic[sửa | sửa mã nguồn]

Các nhà toán học Ấn Độ đã quan tâm đến việc tìm nghiệm nguyên của phương trình Diophantine từ thời kì Vedic. Những ứng dụng sớm nhất vào hình học của phương trình Diophantine có thể tìm thấy trong kinh Sulba, được viết vào khoảng giữa thế kỉ thứ 8 và thế kỉ thứ 6 trước Công nguyên. Baudhayana (năm 800 TCN) tìm thấy hai tập nghiệm nguyên dương của một hệ các phương trình Diophantine, và cũng sử dụng hệ phương trình Diophantine với tới bốn ẩn. Apastamba (năm 600) sử dụng hệ phương trình Diophantine với tới năm ẩn.

Lý thuyết số của người Jaina[sửa | sửa mã nguồn]

Ở Ấn Độ, các nhà toán học Jaina đã phát triển lý thuyết số có hệ thống đầu tiên từ thế kỉ thứ 4 trước Công Nguyên tới thế kỉ thứ 2. Văn tự Surya Prajinapti (năm 400 TCN) phân lớp tất cả các số thành ba tập: đếm được, không đếm được và vô hạn. Mỗi tập này lại được phân thành ba cấp:

Đếm được: thấp nhất, trung bình, và cao nhất.

Không đếm được: gần như không đếm được, thật sự không đếm được, và không đếm được một cách không đếm được.

Vô hạn: gần như vô hạn, thật sự vô hạn, vô hạn một cách vô hạn

Những người Jain là những người đầu tiên không chấp nhận ý tưởng các vô hạn đều như nhau. Họ nhận ra năm loại vô hạn khác nhau: vô hạn theo một hoặc hai hướng (một chiều), vô hạn theo diện tích (hai chiều), vô hạn mọi nơi (ba chiều), và vô hạn liên tục (vô số chiều).

Số đếm được cao nhất N của người Jain tương ứng với khái niệm hiện đại aleph-không {\displaystyle \aleph _{0}}📷 (cardinal number của tập vô hạn các số nguyên 1,2,...), the smallest cardinal transfinite number. Người Jain cũng định nghĩa toàn bộ hệ thống các cardinal number, trong đó {\displaystyle \aleph _{0}}📷 là nhỏ nhất.

Trong công trình của người Jain về lý thuyết tập hợp, họ phân biệt hai loại transfinite number cơ bản. Ở cả lĩnh vực vật lý và bản thể học (ontology), sự khác nhau được tạo ra giữa asmkhyata và ananata, giữa vô hạn bị chặn ngặt và vô hạn bị chặn lỏng.

Lý thuyết số Hellenistic[sửa | sửa mã nguồn]

Lý thuyết số là một đề tài ưa thích của các nhà toán học Hellenistic ở Alexandria, Ai Cập từ thế kỉ thứ 3 sau Công Nguyên. Họ đã nhận thức được khái niệm phương trình Diophantine trong rất nhiều trường hợp đặc biệt. Nhà toán học Hellenistic đầu tiên nghiên cứu những phương trình này là Diophantus.

Diophantus cũng đã tìm kiếm một phương pháp để tìm nghiệm nguyên của các phương trình vô định tuyến tính, những phương trình mà thiếu điều kiện đủ để có một tập duy nhất các nghiệm phân biệt. Phương trình {\displaystyle x+y=5}📷 là một phương trình như vậy. Diophantus đã khám phá ra nhiều phương trình vô định có thể biến đổi thành các dạng đã biết mặc dù thậm chí còn không biết được nghiệm cụ thể.

Lý thuyết số Ấn Độ cổ điển[sửa | sửa mã nguồn]

Phương trình Diophantine đã được nghiên cứu một cách sâu sắc bởi các nhà toán học Ân Độ trung cổ. Họ là những người đầu tiên nghiên cứu một cách có hệ thống các phương pháp tìm nghiệm nguyên của phương trình Diophantine. Aryabhata (499) là người đầu tiên tìm ra dạng nghiệm tổng quát của phương trình Diophantine tuyến tính {\displaystyle ay+bx=c}📷, được ghi trong cuốn Aryabhatiya của ông. Thuật toán kuttaka này được xem là một trong những cống hiến quan trọng nhất của Aryabhata trong toán học lý thuyết, đó là tìm nghiệm của phương trình Diophantine bằng liên phân số. Aryabhata đã dùng kĩ thuật này để tìm nghiệm nguyên của các hệ phương trình Diophantine, một bài toán có ứng dụng quan trọng trong thiên văn học. Ông cũng đã tìm ra nghiệm tổng quát đối với phương trình tuyến tính vô định bằng phương pháp này.

Brahmagupta vào năm 628 đã nắm được những phương trình Diophantine phức tạp hơn. Ông sử dụng phương pháp chakravala để giải phương trình Diophantine bậc hai, bao gồm cả các dạng của phương trình Pell, như là {\displaystyle 61x^{2}+1=y^{2}}📷. Cuốn Brahma Sphuta Siddhanta của ông đã được dịch sang tiếng Ả Rập vào năm 773 và sau đó được dịch sang tiếng Latin vào năm 1126. Phương trình {\displaystyle 61x^{2}+1=y^{2}}📷 sau đó đã được chuyển thành một bài toán vào năm 1657 bởi nhà toán học người Pháp Pierre de Fermat. Leonhard Euler hơn 70 năm sau đã tìm được nghiệm tổng quát đối với trường hợp riêng này của phương trình Pell, trong khi nghiệm tổng quát của phương trình Pell đã được tìm ra hơn 100 năm sau đó bởi Joseph Louis Lagrange vào 1767. Trong khi đó, nhiều thế kỉ trước, nghiệm tổng quát của phương trình Pell đã được ghi lại bởi Bhaskara II vào 1150, sử dụng một dạng khác của phương pháp chakravala. Ông cũng đã sử dụng nó để tìm ra nghiệm tổng quát đối với các phương trình vô định bậc hai và phương trình Diophantine bậc hai khác. Phương pháp chakravala của Bhaskara dùng để tìm nghiệm phương trình Pell đơn giản hơn nhiều so với phương pháp mà Lagrange sử dụng 600 năm sau đó. Bhaskara cũng đã tìm được nghiệm của các phương trình vô định bậc hai, bậc ba, bốn và cao hơn. Narayana Pandit đã cải tiến phương pháp chakravala và tìm thêm được các nghiệm tổng quát hơn đối với các phương trình vô định bậc hai và cao hơn khác.

Lý thuyết số của người Hồi giáo[sửa | sửa mã nguồn]

Từ thế kỉ 9, các nhà toán học Hồi giáo đã rất quan tâm đến lý thuyết số. Một trong những nhà toán học đầu tiên này là nhà toán học Ả Rập Thabit ibn Qurra, người đã khám phá ra một định lý cho phép tìm các cặp số bạn bè, tức là các số mà tổng các ước thực sự của số này bằng số kia. Vào thế kỉ 10, Al-Baghdadi đã nhìn vào một ít biến đổi trong định lý của Thabit ibn Qurra.

Vào thế kỉ 10, al-Haitham có thể là người đầu tiên phân loại các số hoàn hảo chẵn (là các số mà tổng các ước thực sự của nó bằng chính nó) thành các số có dạng {\displaystyle 2^{k-1}(2^{k}-1)}📷trong đó {\displaystyle 2^{k}-1}📷 là số nguyên tố. Al-Haytham cũng là người đầu tiên phát biểu định lý Wilson (nói rằng p là số nguyên tố thì {\displaystyle 1+(p-1)!}📷 chia hết cho p). Hiện không rõ ông ta có biết cách chứng minh nó không. Định lý có tên là định lý Wilson vì căn cứ theo một lời chú thích của Edward Waring vào năm 1770 rằng John Wilson là người đầu tiên chú ý đến kết quả này. Không có bằng chứng nào chứng tỏ John Wilson đã biết cách chứng minh và gần như hiển nhiên là Waring cũng không. Lagrange đã đưa ra chứng minh đầu tiên vào 1771.

Các số bạn bè đóng vai trò quan trọng trong toán học của người Hồi giáo. Vào thế kỉ 13, nhà toán học Ba Tư Al-Farisi đã đưa ra một chứng minh mới cho định lý của Thabit ibn Qurra, giới thiệu một ý tưởng mới rất quan trọng liên quan đến phương pháp phân tích thừa số và tổ hợp. Ông cũng đưa ra cặp số bạn bè 17296, 18416 mà người ta vẫn cho là của Euler, nhưng chúng tao biết rằng những số này còn được biết đến sớm hơn cả al-Farisi, có thể bởi chính Thabit ibn Qurra. Vào thế kỉ 17, Muhammad Baqir Yazdi đưa ra cặp số bạn bè 9.363.584 và 9.437.056 rất nhiều năm trước khi Euler đưa ra.

Lý thuyết số châu Âu ban đầu[sửa | sửa mã nguồn]

Lý thuyết số bắt đầu ở Châu Âu vào thế kỉ 16 và 17, với François Viète, Bachet de Meziriac, và đặc biệt là Fermat, mà phương pháp lùi vô hạn của ông là chứng minh tổng quát đầu tiên của phương trình Diophantine. Định lý lớn Fermat được nêu lên như là một bài toán vào năm 1637, và không có lời giải cho đến năm 1994. Fermat cũng nêu lên bài toán {\displaystyle 61x^{2}+1=y^{2}}📷 vào năm 1657.

Vào thế kỉ 18, Euler và Lagrange đã có những cống hiến quan trọng cho lý thuyết số. Euler đã làm một vài công trình về lý thuyết giải tích số, và tình được một nghiệm tổng quát của phương trình {\displaystyle 61x^{2}+1=y^{2}}📷, mà Fermat nêu thành bài toán. Lagrange đã tìm được một nghiệm của phương trình Pell tổng quát hơn. Euler và Lagrange đã giải những phương trình Pell này bằng phương pháp liên phân số, mặc dù nó còn khó hơn phương pháp chakravala của Ấn Độ.

Mở đầu lý thuyết số hiện đại[sửa | sửa mã nguồn]

Khoảng đầu thế kỉ 19 các cuốn sách của Legendre (1798), và Gauss kết hợp thành những lý thuyết có hệ thống đầu tiên ở châu Âu. Cuốn Disquisitiones Arithmeticae (1801) có thể nói là đã mở đầu lý thuyết số hiện đại.

Sự hình thành lý thuyết đồng dư bắt đầu với cuốn Disquisitiones của Gauss. Ông giới thiệu ký hiệu

{\displaystyle a\equiv b{\pmod {c}},}📷

và đã khám phá ra hầu hết trong lĩnh vực này. Chebyshev đã xuất bản vào năm 1847 một công trình bằng tiếng Nga về chủ đề này, và ở Pháp Serret đã phổ biến nó.

Bên cạnh những công trình tổng kết trước đó, Legendre đã phát biểu luật tương hỗ bậc hai. Định lý này, được khám phá ra bởi qui nạp và được diễn đạt bởi Euler, đã được chứng minh lần đầu tiên bởi Legendre trong cuốn Théorie des Nombres của ông (1798) trong những trường hợp đặc biệt. Độc lập với Euler và Legendre, Gauss đã khám phá ra định luật này vào khoảng năm 1795, và là người đầu tiên đưa ra chứng minh tổng quát. Những người cũng có cống hiến quan trọng: Cauchy; Dirichlet với cuốn Vorlesungen über Zahlentheorie kinh điển; Jacobi, người đã đưa ra ký hiệu Jacobi; Liouville, Zeller (?), Eisenstein, Kummer, và Kronecker. Lý thuyết này đã được mở rộng để bao gồm biquadratic reciprocity (Gauss, Jacobi những người đầu tiên chứng minh luật tương hỗ bậc ba, và Kummer).

Gauss cũng đã đưa ra biểu diễn các số thành các dạng bậc hai cơ số hai.

Lý thuyết số về số nguyên tố[sửa | sửa mã nguồn]

Một chủ đề lớn và lặp đi lặp lại trong lý thuyết số đó là nghiên cứu về sự phân bố số nguyên tố. Carl Fiedrich Gauss đã dự đoán kết quả của định lý số nguyên tố khi còn là học sinh trung học.

Chebyshev (1850) đưa ra các chặn cho số số nguyên tố giữa hai giới hạn cho trước. Riemann giới thiệu giải tích phức thành lý thuyết về hàm zeta Riemann. Điều này đã dẫn đến mối quan hệ giữa các số không của hàm zeta và sự phân bố số nguyên tố, thậm chí dẫn tới một chứng minh cho định lý số về số nguyên tố độc lập với Hadamard và de la Vallée Poussin vào năm 1896. Tuy nhiên, một chứng minh sơ cấp đã được đưa ra sau đó bởi Paul Erdős và Atle Selberg vào năm 1949. Ở đây sơ cấp nghĩa là không sử dụng kĩ thuật giải tích phức; tuy nhiên chứng minh vẫn rất đặc biệt và rất khó. Giả thuyết Riemann, đưa ra những thông tin chính xác hơn, vẫn còn là một câu hỏi mở.

Các thành tựu trong thế kỉ 19[sửa | sửa mã nguồn]

Cauchy, Pointsot (1845), Lebesgue (1859, 1868) và đặc biệt là Hermite đã có những cống hiến đối với lĩnh vực này. Trong lý thuyết về các ternary form Eisenstein đã trở thành người đi đầu, và với ông và H. J. S. Smith đó đúng là một bước tiến quan trọng trong lý thuyết về các dạng. Smith đã đưa ra một sự phân loại hoàn chỉnh về các ternary form bậc hai, và mở rộng những nghiên cứu của Gauss về các dạng bậc hai thực (real quadratic form) thành các dạng phức (complex form). Những nghiên cứu về biểu diễn các số thành tổng của 4, 5, 6, 6, 8 bình phương đã được phát triển bởi Eisenstein và lý thuyết này đã được hoàn chỉnh bởi Smith.

Dirichlet là người đầu tiên thuyết trình về lĩnh vực này ở một trường đại học ở Đức. Một trong những cống hiến của ông là sự mở rộng của Định lý lớn Fermat:

{\displaystyle x^{n}+y^{n}\neq z^{n},(x,y,z\neq 0,n>2)}📷

mà Euler và Legendre đã chứng minh cho n = 3, 4 (và từ đó suy ra cho các bội của 3 và 4). Dirichlet đã chỉ ra rằng:{\displaystyle x^{5}+y^{5}\neq az^{5}}📷. Một số nhà toán học Pháp là Borel, Poincaré, những hồi ký của họ rất lớn và có giá trị; Tannery và Stieltjes. Một số người có những cống hiến hàng đầu ở Đức là Kronecker, Kummer, Schering, Bachmann, và Dedekind. Ở Austria cuốn Vorlesungen über allgemeine Arithmetik của Stolz (1885-86) và ở Anh cuốn Lý thuyết số của Mathew (Phần I, 1892) là các công trình tổng quát rất có giá trị. Genocchi, Sylvester, và J. W. L. Glaisher cũng đã có những cống hiến cho lý thuyết này.

Các thành tựu trong thế kỉ 20[sửa | sửa mã nguồn]

Những nhà toán học lớn trong lý thuyết số thế kỉ 20 bao gồm Paul Erdős, Gerd Faltings, G. H. Hardy, Edmund Landau, John Edensor Littlewood, Srinivasa Ramanujan và André Weil.

Các cột mốc trong lý thuyết số thế kỉ 20 bao gồm việc chứng minh Định lý lớn Fermat bởi Andrew Wiles vào năm 1994 và chứng minh Giả thuyết Taniyama–Shimura vào năm 1999

Danh ngôn[sửa | sửa mã nguồn]

Toán học là nữ hoàng của các khoa học và lý thuyết số là nữ hoàng của toán học. — Gauss

Chúa sinh ra các số nguyên, và phần việc còn lại là của con người. — Kronecker

Tôi biết các con số rất đẹp đẽ. Nếu chúng không đẹp, thì chẳng có thứ gì đẹp.— Erdős

0
Vũ trụ bao gồm tất cả các vật chất và không gian hiện có được coi là một tổng thể. Vũ trụ được cho là có đường kính ít nhất 10 tỷ năm ánh sáng và chứa một số lượng lớn các thiên hà; nó đã được mở rộng kể từ khi thành lập ở Big Bang khoảng 13 tỷ năm trước. Vũ trụ bao gồm các hành tinh, sao, thiên hà, các thành phần của không gian liên sao, những hạt hạ nguyên tử nhỏ...
Đọc tiếp

Vũ trụ bao gồm tất cả các vật chất và không gian hiện có được coi là một tổng thể. Vũ trụ được cho là có đường kính ít nhất 10 tỷ năm ánh sáng và chứa một số lượng lớn các thiên hà; nó đã được mở rộng kể từ khi thành lập ở Big Bang khoảng 13 tỷ năm trước. Vũ trụ bao gồm các hành tinh, sao, thiên hà, các thành phần của không gian liên sao, những hạt hạ nguyên tử nhỏ nhất, và mọi vật chất và năng lượng. Vũ trụ quan sát được có đường kính vào khoảng 28 tỷ parsec (91 tỷ năm ánh sáng) trong thời điểm hiện tại. Các nhà thiên văn chưa biết được kích thước toàn thể của Vũ trụ là bao nhiêu và có thể là vô hạn.Những quan sát và phát triển của vật lý lý thuyết đã giúp suy luận ra thành phần và sự tiến triển của Vũ trụ.

Xuyên suốt các thư tịch lịch sử, các thuyết vũ trụ học và tinh nguyên học, bao gồm các mô hình khoa học, đã từng được đề xuất để giải thích những hiện tượng quan sát của Vũ trụ. Các thuyết địa tâm định lượng đầu tiên đã được phát triển bởi các nhà triết học Hy Lạp cổ đại và triết học Ấn Độ. Trải qua nhiều thế kỷ, các quan sát thiên văn ngày càng chính xác hơn đã đưa tới thuyết nhật tâm của Nicolaus Copernicus và, dựa trên kết quả thu được từ Tycho Brahe, cải tiến cho thuyết đó về quỹ đạo elip của hành tinh bởi Johannes Kepler, mà cuối cùng được Isaac Newton giải thích bằng lý thuyết hấp dẫn của ông. Những cải tiến quan sát được xa hơn trong Vũ trụ dẫn tới con người nhận ra rằng Hệ Mặt Trờinằm trong một thiên hà chứa hàng tỷ ngôi sao, gọi là Ngân Hà. Sau đó các nhà thiên văn phát hiện ra rằng thiên hà của chúng ta chỉ là một trong số hàng trăm tỷ thiên hà khác. Ở trên những quy mô lớn nhất, sự phân bố các thiên hà được giả định là đồng nhất và như nhau trong mọi hướng, có nghĩa là Vũ trụ không có biên hay một tâm đặc biệt nào đó. Quan sát về sự phân bố và vạch phổ của các thiên hà đưa đến nhiều lý thuyết vật lý vũ trụ học hiện đại. Khám phá trong đầu thế kỷ XX về sự dịch chuyển đỏ trong quang phổ của các thiên hà gợi ý rằng Vũ trụ đang giãn nở, và khám phá ra bức xạ nền vi sóng vũ trụcho thấy Vũ trụ phải có thời điểm khởi đầu. Gần đây, các quan sát vào cuối thập niên 1990 chỉ ra sự giãn nở của Vũ trụ đang gia tốc cho thấy thành phần năng lượng chủ yếu trong Vũ trụ thuộc về một dạng chưa biết tới gọi là năng lượng tối. Đa phần khối lượng trong Vũ trụ cũng tồn tại dưới một dạng chưa từng biết đến hay là vật chất tối.

Lý thuyết Vụ Nổ Lớn là mô hình vũ trụ học được chấp thuận rộng rãi, nó miêu tả về sự hình thành và tiến hóa của Vũ trụ. Không gian và thời gian được tạo ra trong Vụ Nổ Lớn, và một lượng cố định năng lượng và vật chất choán đầy trong nó; khi không gian giãn nở, mật độ của vật chất và năng lượng giảm. Sau sự giãn nở ban đầu, nhiệt độ Vũ trụ giảm xuống đủ lạnh cho phép hình thành lên những hạt hạ nguyên tử đầu tiên và tiếp sau là những nguyên tử đơn giản. Các đám mây khổng lồ chứa những nguyên tố nguyên thủy này theo thời gian dưới ảnh hưởng của lực hấp dẫn kết tụ lại thành các ngôi sao. Nếu giả sử mô hình phổ biến hiện nay là đúng, thì tuổi của Vũ trụ có giá trị tính được từ những dữ liệu quan sát là 13,799 ± 0,021 tỷ năm..

Có nhiều giả thiết đối nghịch nhau về Số phận sau cùng của Vũ trụ. Các nhà vật lý và triết học vẫn không biết chắc về những gì, nếu bất cứ điều gì, có trước Vụ Nổ Lớn. Nhiều người phản bác những ước đoán, nghi ngờ bất kỳ thông tin nào từ trạng thái trước này có thể thu thập được. Có nhiều giả thuyết về đa vũ trụ, trong đó một vài nhà vũ trụ học đề xuất rằng Vũ trụ có thể là một trong nhiều vũ trụ cùng tồn tại song song với nhau.

Mỏi quá !

0
Tiếp nha..“Các em có biết không, những điều mà cô vừa nói là quá khứ của họ, còn sự nghiệp sau này của họ, là những việc mà họ đã làm sau khi đã thoát ra khỏi cái quá khứ đó. Các em ạ, cuộc sống của các em chỉ mới bắt đầu. Vinh quang và tủi nhục trong quá khứ chỉ đại diện cho quá khứ, còn cái thực sự đại diện cho cuộc đời một con người chính là những việc làm ở hiện...
Đọc tiếp

Tiếp nha..“Các em có biết không, những điều mà cô vừa nói là quá khứ của họ, còn sự nghiệp sau này của họ, là những việc mà họ đã làm sau khi đã thoát ra khỏi cái quá khứ đó. Các em ạ, cuộc sống của các em chỉ mới bắt đầu. Vinh quang và tủi nhục trong quá khứ chỉ đại diện cho quá khứ, còn cái thực sự đại diện cho cuộc đời một con người chính là những việc làm ở hiện tại và tương lai. Hãy bước ra từ bóng tối của quá khứ, bắt đầu làm lại từ hôm nay, cố gắng làm những việc mà các em muốn làm, và cô tin các em sẽ trở thành những người xuất chúng…” – Phila vừa nói vừa nhìn chúng với ánh mắt đầy hi vọng.

Và bạn biết không, sau này khi trưởng thành, rất nhiều học sinh trong số họ đã trở thành những người thành đạt trong cuộc sống. Có người trở thành bác sĩ tâm lý, có người trở thành quan tòa, có người lại trở thành nhà du hành vũ trụ. Và trong số đó phải kể đến Robert Harrison, cậu học sinh thấp nhất và quậy phá nhất lớp, nay đã trở thành Giám đốc tài chính của phố Wall.

Suy ngẫm:

Ý nghĩa của câu chuyện ở đây là bạn hãy đừng bao giờ ngừng hi vọng, ngừng yêu thương, ngừng cố gắng bởi hôm qua chỉ là quá khứ, ngày mai là một điều bí mật, còn ngày hôm nay là một món quà. Và đó là lý sao nó được gọi là “The Present” (hiện tại/món quà).

Trong cuộc đời của con người, mỗi ngày đều có thể là một sự bắt đầu mới mẻ còn những vinh quang và tủi nhục của ngày hôm qua đều chỉ là dĩ vãng. Những việc trong quá khứ nói cho người khác biết bạn đã từng là người như thế nào, nhưng chính những việc làm ở hiện tại và tương lai mới nói lên bạn là ai.

 

3
24 tháng 2 2017

cái này là văn hay toán vậy ạ?

Phần 2 

của câu chuyện lúc nãy à

:)) hay quá