K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2021

Xét ~~~~\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\ge\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)\(\Leftrightarrow\frac{\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)}{abc}\ge\frac{\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)}{abc}\)\(\Leftrightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)(Do a,b,c không nhỏ hơn 1 nên abc > 0)\(\Leftrightarrow a^2b^2c^2-\left(abc^2+ab^2c+a^2bc\right)+\left(ab+bc+ca\right)-1\ge a^2b^2c^2-\left(a^2b^2+b^2c^2+c^2a^2\right)+\left(a^2+b^2+c^2\right)-1\)\(\Leftrightarrow-\left(abc^2+ab^2c+a^2bc\right)+\left(ab+bc+ca\right)\ge-\left(a^2b^2+b^2c^2+c^2a^2\right)+\left(a^2+b^2+c^2\right)\)\(\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(abc^2+ab^2c+a^2bc\right)\ge2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\)\(\Leftrightarrow\left(bc-ca\right)^2+\left(ab-bc\right)^2+\left(ca-ab\right)^2\ge\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)\(\Leftrightarrow c^2\left(a-b\right)^2+b^2\left(a-c\right)^2+a^2\left(b-c\right)^2\ge\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)\(\Leftrightarrow\left(c^2-1\right)\left(a-b\right)^2+\left(b^2-1\right)\left(a-c\right)^2+\left(a^2-1\right)\left(b-c\right)^2\ge0\)(Đúng do a,b,c không nhỏ hơn 1)

Đẳng thức xảy ra khi a = b = c hoặc (a,b,c) = (1,1,k) (k bất kì) và các hoán vị

12 tháng 3 2022

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

28 tháng 10 2019

Ta có :

\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\ge\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{\left(ab-1\right)\left(bc-1\right)\left(ac-1\right)}{abc}\ge\frac{\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)}{abc}\)

\(\Leftrightarrow\left(ab-1\right)\left(bc-1\right)\left(ac-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)

\(\Leftrightarrow\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ac-ab\right)^2\ge\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\Leftrightarrow\left(a-c\right)^2\left(b^2-1\right)+\left(b-c\right)^2\left(a^2-1\right)+\left(a-b\right)^2\left(c^2-1\right)\ge0\left(1\right)\)

Do a,b,c là các số thực dương không nhỏ hơn 1 nên (1) đúng .

Dấu đẳng thức xảy ra khi và khỉ khi : \(\hept{\begin{cases}\left(a-c\right)^2\left(b^2-1\right)=0\\\left(b-c\right)^2\left(a^2-1\right)=0\\\left(a-b\right)^2\left(c^2-1\right)=0\end{cases}\Rightarrow a=b=c}\)

28 tháng 10 2019

Dấu "=" còn xảy ra ở các TH: 

a = b = 1, c bất kì .

a = c =1, b bất kì

b = c = 1,  a bất kì

( a, b, c ko nhỏ hơn 1 )

25 tháng 10 2019

a=c+2; b= c+1; c>0 => a;b >0

\(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}< =>2\sqrt{a}< 2\sqrt{b}+\frac{1}{\sqrt{b}};\)

2  vế không âm, bình phương và rút gọn ta được \(4a< 4b+4+\frac{1}{b}< =>4\left(b+1\right)< 4\left(b+1\right)+\frac{1}{b}< =>0< \frac{1}{b};\)(đúng vì b>0)

\(\frac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)< =>\frac{1}{\sqrt{b}}+2\sqrt{b}< 2\sqrt{c}\)

bình phương và thay b= c+1 ta được điều tương tự