K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2020

a) Ta có:

\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)

\(\Leftrightarrow\left[\left(\frac{2a+b}{a+b}-1\right)+\left(\frac{2b+c}{b+c}-1\right)-1\right]+\left[\left(\frac{2c+d}{c+d}-1\right)+\left(\frac{2d+a}{d+a}-1\right)-1\right]=0\)

\(\Leftrightarrow\left(\frac{a}{a+b}+\frac{b}{b+c}-1\right)+\left(\frac{c}{c+d}+\frac{d}{d+a}-1\right)=0\)

\(\Leftrightarrow\left(\frac{a.\left(b+c\right)}{\left(a+b\right).\left(b+c\right)}+\frac{b.\left(a+b\right)}{\left(a+b\right).\left(b+c\right)}-\frac{\left(a+b\right).\left(b+c\right)}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{c.\left(d+a\right)}{\left(c+d\right).\left(d+a\right)}+\frac{d.\left(c+d\right)}{\left(c+d\right).\left(d+a\right)}-\frac{\left(c+d\right).\left(d+a\right)}{\left(c+d\right).\left(d+a\right)}\right)=0\)

\(\Leftrightarrow\left(\frac{ab+ac}{\left(a+b\right).\left(b+c\right)}+\frac{ab+b^2}{\left(a+b\right).\left(b+c\right)}-\frac{ab+ac+b^2+bc}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{cd+ac}{\left(c+d\right).\left(d+a\right)}+\frac{cd+d^2}{\left(c+d\right).\left(d+a\right)}-\frac{cd+ac+d^2+ad}{\left(c+d\right).\left(d+a\right)}\right)=0\)

\(\Leftrightarrow\left(\frac{ab+ac+ab+b^2-ab-ac-b^2-bc}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{cd+ac+cd+d^2-cd-ac-d^2-ad}{\left(c+d\right).\left(d+a\right)}\right)=0\)

\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}+\frac{cd-ad}{\left(c+d\right).\left(d+a\right)}=0\)

\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}=-\frac{cd-ad}{\left(c+d\right).\left(d+a\right)}\)

\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}=\frac{ad-cd}{\left(c+d\right).\left(d+a\right)}\)

\(\Leftrightarrow\frac{b.\left(a-c\right)}{\left(a+b\right).\left(b+c\right)}=\frac{d.\left(a-c\right)}{\left(c+d\right).\left(d+a\right)}\)

\(\Leftrightarrow\frac{b}{\left(a+b\right).\left(b+c\right)}=\frac{d}{\left(c+d\right).\left(d+a\right)}\) (vì \(a;b;c;d\) là số nguyên dương).

\(\Leftrightarrow b\left(c+d\right).\left(d+a\right)=d\left(a+b\right).\left(b+c\right)\)

\(\Leftrightarrow\left(bc+bd\right).\left(d+a\right)=\left(ad+bd\right).\left(b+c\right)\)

\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)

\(\Leftrightarrow bd^2+abc=b^2d+acd\)

\(\Leftrightarrow bd^2-b^2d=acd-abc\)

\(\Leftrightarrow bd.\left(d-b\right)=ac.\left(d-b\right)\)

\(\Leftrightarrow bd.\left(d-b\right)-ac.\left(d-b\right)=0\)

\(\Leftrightarrow\left(d-b\right).\left(bd-ac\right)=0\)

\(a;b;c;d\) là số nguyên dương.

\(\Rightarrow d-b>0\)

\(\Rightarrow d-b\ne0.\)

\(\Leftrightarrow bd-ac=0\)

\(\Leftrightarrow bd=ac.\)

Lại có:

\(A=abcd\)

\(\Rightarrow A=ac.bd\)

\(\Rightarrow A=ac.ac\)

\(\Rightarrow A=\left(ac\right)^2.\)

\(\Rightarrow A=abcd\) là số chính phương (đpcm).

Chúc bạn học tốt!

NV
6 tháng 1 2019

Ta có: \(x+2y+3x=0\Leftrightarrow x=-\left(2y+3z\right)\)

Lại có: \(2xy+6yz+3xz=0\Leftrightarrow x\left(2y+3z\right)+6yz=0\)

\(\Leftrightarrow-\left(2y+3z\right)\left(2y+3z\right)+6yz=0\Leftrightarrow-\left(2y+3z\right)^2+6yz=0\)

\(\Leftrightarrow\left(2y+3z\right)^2-6yz=0\Leftrightarrow4y^2+12yz+9z^2-6yz=0\)

\(\Leftrightarrow4y^2+6yz+9z^2=0\Leftrightarrow\left(2y+\dfrac{3z}{2}\right)^2+\dfrac{27z^2}{4}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2y+\dfrac{3z}{2}\right)^2=0\\\dfrac{27z^2}{4}=0\end{matrix}\right.\) \(\Rightarrow y=z=0\Rightarrow x=0\)

\(\Rightarrow S=\dfrac{\left(-1\right)^{2019}-1^{2017}+\left(-1\right)^{2015}}{1^{2018}+2.0^{2016}+0^{2014}+2}=\dfrac{-1-1+-1}{1+0+0+2}=\dfrac{-3}{3}=-1\)

5 tháng 8 2017

5) a) Ta có: \(a< b+c\)

\(\Rightarrow a^2< ab+ac\)

Tương tự: \(b^2< ba+bc\)

\(c^2< ca+cb\)

Cộng từng vế các BĐT vừa chứng minh, ta được đpcm

b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)

\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)

Nhân từng vế các BĐT trên, ta được

\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)

Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Bài 5:

a)

Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)

\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên

\(b+c-a,a+b-c,c+a-b>0\)

b) Áp dụng BĐT Am-Gm:

\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)

\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)

\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)

Nhân theo vế :

\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)

\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)

Do đó ta có đpcm

c)

\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)

\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)

\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)

\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)

\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)

Do đó ta có đpcm.

30 tháng 10 2018

2. Đặt c + d = x

Ta có: \(a+b+c+d=0\Rightarrow a+b+x=0\Rightarrow a^3+b^3+c^3+d^3=3abx\)

\(\Rightarrow a^3+b^3+c^3+d^3+3cd\left(c+d\right)=3ab\left(c+d\right)\)

\(\Rightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)=3\left(ab-cd\right)\left(c+d\right)\)

Câu 4:

      \(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}+a^{1008}\)

\(\Rightarrow2a^{2016}+2b^{2016}+2c^{2016}-2a^{1008}b^{1008}-2b^{1008}c^{1008}-2c^{1008}a^{1008}=0\)

\(\Rightarrow\left(a^{1008}-b^{1008}\right)^2+\left(b^{1008}-c^{1008}\right)^2+\left(c^{1008}-a^{1008}\right)^2=0\)

\(\Rightarrow a^{1008}=b^{1008},b^{1008}=c^{1008},c^{1008}=a^{1008}\)

\(\Rightarrow a=b,b=c,c=a\) (vì a,b,c > 0 nên \(a\ne-b,b\ne-c,c\ne-a\) )

\(\Rightarrow a-b=0,b-c=0,a-c=0\)

Thay vào A ta tính được A = 0

4 tháng 9 2021

a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)

b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)

\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)

 

a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)