K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2023

Đề có lẽ là "Tìm maxP" chứ nhỉ?

Vì a,b là các số thực dương nên:

\(P=\dfrac{ab}{a^2+2b^2}=\dfrac{1}{\dfrac{a}{b}+\dfrac{2b}{a}}\)

Ta có \(2b\ge ab+4\Rightarrow\dfrac{2b}{a}\ge b+\dfrac{4}{a}\)

Áp dụng BĐT Cauchy ta có \(b+\dfrac{4}{a}\ge4\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\dfrac{2b}{a}\ge4\sqrt{\dfrac{b}{a}}\Leftrightarrow\left(\dfrac{b}{a}-2\sqrt{\dfrac{b}{a}}+1\right)\ge1\)

\(\Leftrightarrow\left(\sqrt{\dfrac{b}{a}}-1\right)^2\ge1\Leftrightarrow\sqrt{\dfrac{b}{a}}-1\ge1\Leftrightarrow\dfrac{b}{a}\ge4\).

Đặt \(x=\dfrac{b}{a}\Rightarrow x\ge4\). Ta có: \(\dfrac{1}{P}=2x+\dfrac{1}{x}=\left(\dfrac{x}{16}+\dfrac{1}{x}\right)+\dfrac{31x}{16}\ge2\sqrt{\dfrac{x}{16}.\dfrac{1}{x}}+\dfrac{15.4}{16}=\dfrac{33}{4}\)

\(\Leftrightarrow P\le\dfrac{4}{33}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{b}{a}=4\\2b=ab+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\a=1\end{matrix}\right.\)

Vậy \(MaxP=\dfrac{4}{33}\).

 

1 tháng 4 2023

mình xin lỗi bạn nhé là max 

AH
Akai Haruma
Giáo viên
29 tháng 3 2023

Lời giải:
Áp dụng BĐT AM-GM:
$P\leq \frac{ab}{2\sqrt{a^2b^2}}=\frac{ab}{2ab}=\frac{1}{2}$

Dấu "=" xảy ra khi $a=b$ (thay vào điều kiện $2b\leq ab+4\Leftrightarrow a^2+4\geq 2a$- cũng luôn đúng)

NV
24 tháng 3 2023

\(2ab+6bc+2ac=7abc\Rightarrow\dfrac{6}{a}+\dfrac{2}{b}+\dfrac{2}{c}=7\)

Đặt \(\left(\dfrac{2}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow3x+2y+2z=7\)

\(C=\dfrac{4}{\dfrac{2}{a}+\dfrac{1}{b}}+\dfrac{9}{\dfrac{4}{a}+\dfrac{1}{c}}+\dfrac{4}{\dfrac{1}{b}+\dfrac{1}{c}}=\dfrac{4}{x+y}+\dfrac{9}{2x+z}+\dfrac{4}{y+z}\)

\(C\ge\dfrac{\left(2+3+2\right)^2}{x+y+2x+z+y+z}=\dfrac{49}{7}=7\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(2;1;1\right)\)

NV
28 tháng 3 2023

Áp dụng BĐT Mincopxki:

\(P\ge\sqrt{\left(a+b+c\right)^2+2\left(a+b+c\right)^2}=\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Lại có do \(a;b;c\ge0\) nên:

\(a^2+2b^2\le a^2+2\sqrt{2}ab+2b^2=\left(a+\sqrt{2}b\right)^2\)

\(\Rightarrow\sqrt{a^2+2b^2}\le a+\sqrt{2}b\)

Tương tự và cộng lại:

\(\Rightarrow P\le\left(\sqrt{2}+1\right)\left(a+b+c\right)=\sqrt{2}+1\)

Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(1;0;0\right)\) và các hoán vị

28 tháng 3 2023

thầy chỉ cho em hiểu rõ hơn dòng 4 với ạ 

AH
Akai Haruma
Giáo viên
24 tháng 3 2023

Lời giải:
Áp dụng BĐT AM-GM:

$\frac{x^2}{y+z}+\frac{y+z}{4}\geq 2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x$

$\frac{y^2}{x+z}+\frac{x+z}{4}\geq y$

$\frac{z^2}{x+y}+\frac{x+y}{4}\geq z$

Cộng theo vế các BĐT trên và thu gọn ta được:

$P\geq \frac{x+y+z}{2}=\frac{2}{2}=1$ 

Vậy $P_{\min}=1$ khi $x=y=z=\frac{2}{3}$

24 tháng 3 2023

cảm ơn chị rất nhiều =)))))))) 

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

31 tháng 8 2021

CMR gì bạn?

Đề không hiện 

31 tháng 8 2021

undefined