K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

bđt cần c/m <=>

\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)

ok

16 tháng 10 2019

Áp dụng BĐT Cauchy ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}\le\frac{\sqrt{ab}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VP\le4\left(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)

Áp dụng BĐT Cauchy ta có : \(a+b\ge2\sqrt{ab}\)
\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\frac{1}{2}\right)^2\ge2.2\sqrt{ab}.\frac{1}{2}=2\sqrt{ab}\)

Thiết lập tương tự và thu lại ta có ;

\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)

Từ (1) và (2)  suy ra

\(VT\ge VP\)

\(\Rightarrowđpcm\)

Chúc bạn học tốt !!!

3 tháng 11 2019

Áp dụng bđt Cauchy ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}\le\frac{\sqrt{ab}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VP\le4\left(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)

Áp dụng bđt Cauchy ta cso :
\(a+b\ge2\sqrt{ab}\)

\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\frac{1}{2}\right)^2\ge2.2\sqrt{ab}.\frac{1}{2}=2\sqrt{ab}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)

Từ (1) và (2) 

\(VT\ge VP\)

\(\Rightarrowđpcm\)

Chúc bạn học tốt !!!

12 tháng 11 2020

Giả sử \(c=min\left\{a,b,c\right\}\)

Khi đó ta được: \(ab+bc+ca\ge ab;\frac{1}{\left(b-c\right)^2}\ge\frac{1}{b^2};\frac{1}{\left(c-a\right)^2}\ge\frac{1}{a^2}\)

Do đó ta cần chứng minh \(ab\left(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\)hay \(\frac{ab}{\left(a-b\right)^2}+\frac{\left(a-b\right)^2}{ab}\ge2\)*đúng theo bất đẳng thức Cô - si*

Đẳng thức xảy ra khi \(a^2+b^2=3ab,c=0\)

16 tháng 5 2017

Giả sử c = min(a,b,c), khi đó ab+bc+ca>=ab; 1/(b-c)^2>=1/b^2; 1/(c-a)^2>=1/a^2. Ta cần chứng minh: ab(1/(a-b)^2 +1/b^2 + 1/a^2 )>=4. Bằng cách biến đổi tương đương ta được: [ab/(a-b)^2 +a/b + b/a]>=4 <=> ab/(a-b)^2 +a/b+b/a-4>=0 <=>ab/(a-b)^2 + (a^2+b^2-4ab)/ab>=0 <=> ab/(a-b)^2 +[(a-b)^2-2ab]/ab>=0 <=> ab/(a-b)^2 +(a-b)^2/ab - 2 >=0 (1).

Đặt k = ab/(a-b)^2>=0 => (a-b)^2 = 1/k >0. 

Áp dụng BĐT Cosi cho k và 1/k => k+1/k >=2 căn(k.1/k)=2 => k+1/k-2>=0 => (1) đã được chứng minh.

Vậy (ab+bc+ca)[1/(a-b)^2 + 1/(b-c)^2 + 1/(c-a)^2]>=4. 

Dấu bằng xảy ra khi c = 0 và k=1/k => k^2=1 => a^2b^2=(a-b)^4 => (a-b)^2=ab => a^2+b^2-2ab=ab => a^2-3ab+b^2 = 0. Xem đây là PT bậc hai theo a với hệ số theo b. Lập Delta = 9b^2-4b^2 = 5b^2 => a = (3b+bcăn 5)/2 hoặc a = (3b-bcăn 5)/2.

7 tháng 8 2016

Vì vai trò bình đẳng của các ẩn  \(a,b,c\)  là như nhau nên không mất tính tổng quát, ta có thể giả sử:

\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do  \(a,b,c\)  đôi một khác nhau nên cũng không đồng thời bằng nhau)

Áp dụng bđt  \(AM-GM\)  cho từng bộ số gồm có các số không âm, ta có:

\(\left(i\right)\)  Với  \(\frac{1}{\left(a-b\right)^2}>0;\)  \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\)  \(\left(1\right)\)

\(\left(ii\right)\) Với  \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)

 \(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\)  \(\left(2\right)\)

\(\left(iii\right)\)  Với  \(\frac{1}{\left(c-a\right)^2}>0;\)  \(\frac{c-a}{16}>0\)

\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)

\(\Rightarrow\)  \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\)  \(\left(3\right)\)

Cộng từng vế ba bất đẳng thức  \(\left(1\right);\)  \(\left(2\right)\)  và   \(\left(3\right)\)  , ta được:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)

nên   \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)

Mặt khác, từ  \(\left(\alpha\right)\)  ta suy ra được:  \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)

nên   \(a+2\ge c\) hay nói cách khác  \(a-c\ge-2\)

Do đó,  \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(\hept{\begin{cases}a=0\\b=1\\c=2\end{cases}}\)  (thỏa mãn  \(\left(\alpha\right)\)  )

7 tháng 8 2016

Vì vai trò bình đẳng của các ẩn  \(a,b,c\)  là như nhau nên không mất tính tổng quát, ta có thể giả sử:

\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do  \(a,b,c\)  đôi một khác nhau nên cũng không đồng thời bằng nhau)

Áp dụng bđt  \(AM-GM\)  cho từng bộ số gồm có các số không âm, ta có:

\(\left(i\right)\)  Với  \(\frac{1}{\left(a-b\right)^2}>0;\)  \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\)  \(\left(1\right)\)

\(\left(ii\right)\) Với  \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)

 \(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\)  \(\left(2\right)\)

\(\left(iii\right)\)  Với  \(\frac{1}{\left(c-a\right)^2}>0;\)  \(\frac{c-a}{16}>0\)

\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)

\(\Rightarrow\)  \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\)  \(\left(3\right)\)

Cộng từng vế ba bất đẳng thức  \(\left(1\right);\)  \(\left(2\right)\)  và   \(\left(3\right)\)  , ta được:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)

nên   \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)

Mặt khác, từ  \(\left(\alpha\right)\)  ta suy ra được:  \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)

nên   \(a+2\ge c\) hay nói cách khác  \(a-c\ge-2\)

Do đó,  \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(a=0;b=1;c=2\)  (thỏa mãn  \(\left(\alpha\right)\)  )

Ta có: \(\frac{1}{x\left(a-b\right)\left(a-c\right)}+\frac{1}{y\left(b-a\right)\left(b-c\right)}+\frac{1}{z\left(c-a\right)\left(c-b\right)}\)

\(=\frac{1}{x\left(a-b\right)\left(a-c\right)}-\frac{1}{y\left(a-b\right)\left(b-c\right)}+\frac{1}{z\left(a-c\right)\left(b-c\right)}\)

\(=\frac{yz\left(b-c\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\frac{xz\left(a-c\right)}{yxz\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{xy\left(a-b\right)}{zxy\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\frac{yz\left(b-c\right)-xz\left(a-c\right)+xy\left(a-b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)\(=\frac{yz\left(b-c\right)-xz\left[\left(b-c\right)+\left(a-b\right)\right]+xy\left(a-b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{yz\left(b-c\right)-xz\left(b-c\right)-xz\left(a-b\right)+xy\left(a-b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)z\left(y-x\right)-\left(a-b\right)x\left(z-y\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)z\left(c+a-b-b-c+a\right)-\left(a-b\right)x\left(a+b-c-c-a+b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)z\left(2a-2b\right)-\left(a-b\right)x\left(2b-2c\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)2z\left(a-b\right)-\left(a-b\right)2x\left(b-c\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(2z-2x\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{2\left(z-x\right)}{xyz\left(a-c\right)}=\frac{2\left(a+b-c-b-c+a\right)}{xyz\left(a-c\right)}\)

\(=\frac{2\left(2a-2c\right)}{xyz\left(a-c\right)}=\frac{2.2\left(a-c\right)}{xyz\left(a-c\right)}=\frac{4}{xyz}\Rightarrowđpcm\)

21 tháng 8 2019

\(\frac{\left(a+b\right)^2}{c}+4c\ge2\sqrt{\frac{\left(a+b\right)^2}{c}\cdot4c}=4\left(a+b\right)\\ \frac{\left(b+c\right)^2}{a}+4a\ge2\sqrt{\frac{\left(b+c\right)^2}{a}\cdot4a}=4\left(b+c\right)\\ \frac{\left(c+a\right)^2}{b}+4b\ge2\sqrt{\frac{\left(c+a\right)^2}{b}\cdot4b}=4\left(c+a\right)\\ \Rightarrow\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}+4\left(a+b+c\right)\ge8\left(a+b+c\right)\\ \Rightarrow\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge4\left(a+b+c\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)