K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2016

nè Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Chứng minh rằngcăn(5a + 4) + căn(5b + 4) + căn(5c + 4) >= 7- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

15 tháng 12 2017

Vì a,b,c không âm và có tổng bằng 1 nên

\(0\le a,b,c\le\left\{{}\begin{matrix}a\left(1-a\right)\ge0\\b\left(1-b\right)\ge0\\c\left(1-c\right)\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ge a^2\\b\ge b^2\\c\ge c^2\end{matrix}\right.\)

Suy ra \(\sqrt{5a+4}\ge\sqrt{a^2+4a+4}=\sqrt{\left(a+2\right)^2}=a+2\)

Tương tự ta có: \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\)

Do đó: \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\ge\left(a+b+c\right)+6=7\) (điều phải chứng minh)

15 tháng 12 2017

Hay!!

NV
4 tháng 10 2021

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)

\(=abc-\left(ab+bc+ca\right)+a+b+c-1\)

\(=abc-abc+1-1=0\) (đpcm)

17 tháng 10 2020

1. Ta có: \(ab+bc+ca=3abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)

Áp dụng Cauchy ta được:

\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)

\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)

\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)

\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)

\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)

\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)

\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)

\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)

\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)

Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)

14 tháng 9 2018

ta co: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1.\)

=> a = b = c 

\(\Rightarrow S=\frac{4a-5b+2019c}{5a-5b+2020c}=\frac{4a-5a+2019a}{5a-5a+2020c}=\frac{2018a}{2020a}=\frac{1009}{1010}\)

14 tháng 9 2018

ta co: a/b=b/c=c/a =  (a+b+c)/(b+c+a) = 1

=> a/b = 1 => a = b

b/c =  1 => b = c

=> a = b = c

\(\Rightarrow S=\frac{4a-5a+2019a}{5a-5a+2020a}=\frac{2018a}{2020a}=\frac{1009}{1010}.\)

10 tháng 12 2017

Ta co: \(a^4+b^4+c^4\)

\(=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+abc^2+a^2bc\right)\right]\)

\(=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)

\(=\left(a^2+b^2+c^2\right)^2-2\left(ab+bc+ca^2\right)\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)=2\left(a^2+b^2+c^2\right)^2-4\left(ab+bc+ca\right)^2\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2-\left(2ab+2bc+2ca\right)^2\)     \(\left(1\right)\)

Lại có: \(a+b+c=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow2ab+2bc+2ca=-\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\left(2ab+2bc+2ca\right)^2=\left(a^2+b^2+c^2\right)^2\)                                                \(\left(2\right)\)

Từ (1) và (2) suy ra

\(2\left(a^4+b^4+c^4\right)=2\left(a^2+b^2+c^2\right)^2-\left(a^2+b^2+c^2\right)^2\)

                                    \(=\left(a^2+b^2+c^2\right)^2\)

31 tháng 3 2020

Xét \(\frac{5a^3-b^3}{ab+3a^2}\le2a-b\)(1)

<=> \(5a^3-b^3\le\left(2a-b\right)\left(ab+3a^2\right)\)

<=> \(5a^3-b^3\le6a^3-a^2b-b^2a\)

<=> \(a^3+b^3\ge ab\left(a+b\right)\)

<=> \(a^2-ab+b^2\ge ab\)

<=> \(\left(a-b\right)^2\ge0\)(luôn đúng)

=> (1) được CM

=> \(VT\le2a-b+2b-c+2c-a=a+b+c\le2018\)(ĐPCM)

Dấu bằng xảy ra khi \(a=b=c=\frac{2018}{3}\)