K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2015

Áp dụng bđt \(\sqrt{ab}\le\frac{a+b}{2}\)ta có
\(\sqrt{1\left(2a-1\right)}\le\frac{1+2a-1}{2}=a\)
từ đó suy ra ĐPCM

18 tháng 4 2023

Ta có \(\sqrt{a-1}+\dfrac{1}{\sqrt{a-1}}\) \(=\sqrt{a-1}+\dfrac{1}{4\sqrt{a-1}}+\dfrac{3}{4\sqrt{a-1}}\) \(\ge2\sqrt{\sqrt{a-1}.\dfrac{1}{4\sqrt{a-1}}}+\dfrac{3}{4\sqrt{a-1}}\) \(=1+\dfrac{3}{4\sqrt{a-1}}\).

Lập 2 BĐT tương tự rồi cộng vế theo vế, ta có

\(VT\ge3+\dfrac{3}{4}\left(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\right)\)

\(\ge3+\dfrac{3}{4}.\dfrac{9}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\) 

\(\ge3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}\) \(=\dfrac{15}{2}\)

ĐTXR \(\Leftrightarrow a=b=c=\dfrac{5}{4}\). Ta có đpcm

18 tháng 4 2023

Có \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}+\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}-\left(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\right)\ge6\) (1)

Ta chứng minh (1) đúng 

Áp dụng bất đẳng thức Schwarz : 

\(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{\left(1+1+1\right)^2}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\ge\dfrac{9}{\dfrac{3}{2}}=6\)Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{a-1}=\sqrt{b-1}=\sqrt{c-1}\\\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}=\dfrac{3}{2}\end{matrix}\right.\) 

\(\Leftrightarrow a=b=c=\dfrac{5}{4}\)(tm) 

 

26 tháng 9 2016

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)

1 tháng 12 2016

Bạn bổ sung thêm điều kiện a,b là các số không âm nhé :)

Áp dụng BĐT \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\) được : 

\(\sqrt{\frac{a^2+b^2}{2}}=\frac{1}{\sqrt{2}}.\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}.\frac{1}{\sqrt{2}}=\frac{a+b}{2}\)

Đẳng thức xảy ra khi a = b 

30 tháng 11 2016

Bất đẳng thức côsi

Câu 1: Cho \(a,b,c0\)và \(a+b+c=3\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).Câu 2: Cho \(a,b,c,d0\)và \(a+b+c+d=4\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).Câu 3: Cho \(a,b,c,d0\). Chứng minh rằng:\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).Câu 4: Cho \(a,b,c,d0\). Chứng minh...
Đọc tiếp

Câu 1Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).

Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).

Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).

Câu 4: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\ge\frac{a+b+c+d}{3}\).

Câu 5: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\).

Câu 6: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng: 

\(\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\ge1\).

Câu 7: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Câu 8: Cho \(a_1,a_2,...,a_{n-1},a_n>0\)và \(a_1+a_2+...+a_{n-1}+a_n=n\)với \(n\)nguyên dương. Chứng minh:

\(\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_{n-1}+1}+\frac{1}{a_n+1}\ge\frac{n}{2}\).

 

 

0
18 tháng 12 2019

\(VT=\frac{\left(\sqrt[3]{abc}\right)^2}{2abc}+\Sigma\frac{a^2}{a^2\left(b+c\right)}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\Sigma a^2\left(b+c\right)+2abc}=\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

16 tháng 10 2018

\(\frac{a^2}{b}-a+b+b=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\)

\(=\sqrt{a^2-ab+b^2}+\sqrt{a^2-ab+b^2}=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\)

\(\ge\sqrt{a^2-ab+b^2}+\sqrt{\frac{1}{4}\left(a+b\right)^2}=\sqrt{a^2-ab+b^2}+\frac{a+b}{2}\)

chứng minh tương tự ta được

\(\frac{b^2}{c}-b+c+c\ge\sqrt{b^2-bc+c^2}+\frac{b+c}{2},\frac{c^2}{a}-c+a+a\ge\sqrt{c^2-ca+a^2}+\frac{a+c}{2}\)

cộng vế với vế ta được

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}+a+b+c\)

Dấu bằng xảy ra khi a=b=c

8 tháng 1 2020

Với a, b > 0

Ta có: \(2\sqrt{a+3}\le\frac{\left(a+3\right)+4}{2}\)

\(\Leftrightarrow2\sqrt{a+3}\le\frac{a+2}{2}\)

\(\Leftrightarrow\frac{2}{\sqrt{a+3}}\ge\frac{8}{a+7}\)

Ta có: \(2\sqrt{b+3}\le\frac{\left(b+3\right)+4}{2}\)

\(\Leftrightarrow\frac{1}{\sqrt{b+3}}\ge\frac{4}{b+7}\)

\(\Rightarrow\frac{2}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\ge\frac{8}{a+7}+\frac{4}{b+7}=\frac{4}{a+7}+\frac{4}{a+7}+\frac{4}{b+7}\)

\(\ge4\left(\frac{1}{a+7}+\frac{1}{a+7}+\frac{1}{b+7}\right)\)

\(\ge4.\frac{9}{2a+b+21}=4.\frac{9}{3+21}=\frac{36}{24}\)

\(\ge\frac{3}{2}\left(đpcm\right)\)

Vậy\(\frac{2}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\ge\frac{3}{2}\)

8 tháng 1 2020

Cách khác:

Ta có: \(VT=\frac{2}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}=\frac{2}{\sqrt{\left(a+1\right)+2}}+\frac{1}{\sqrt{\left(b+1\right)+2}}\ge\frac{2}{\frac{a+1+2}{2}}+\frac{1}{\frac{b+1+2}{2}}=\frac{4}{a+3}+\frac{2}{b+3}\)(1) (BĐT Cô-si)

Lại có: \(2a+b\le3\Leftrightarrow\left\{{}\begin{matrix}a+3\ge3a+b\\b+3\ge2\left(a+b\right)\end{matrix}\right.\). Thay vào (1) ta được:

\(VT\ge\frac{4}{3a+b}+\frac{1}{a+b}\)

Áp dụng BĐT Schwarz, ta được:

\(VT\ge\frac{4}{3a+b}+\frac{1}{a+b}\ge\frac{\left(2+1\right)^2}{4a+2b}=\frac{3^2}{2\left(2a+b\right)}\ge\frac{3^2}{2.3}=\frac{3}{2}\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi a=b=1

11 tháng 10 2018

Theo BĐT cô- si, ta có:

\(\sqrt{1+a^2}+\sqrt{1+b^2}\ge2.\sqrt[4]{\left(1+a^2\right)\left(b^2+1\right)}\)

Áp dụng BĐT Bu- nhi-a cốp-xki , ta có:

\(\left(1+a^2\right)\left(b^2+1\right)\ge\left(a+b\right)^2\)

\(\Rightarrow2.\sqrt[4]{\left(1+a^2\right)\left(b^2+1\right)}\ge2\sqrt{a+b}\)

hay:  \(\sqrt{1+a^2}+\sqrt{1+b^2}\ge2\sqrt{a+b}\)

Tương tự:

\(\sqrt{1+b^2}+\sqrt{1+c^2}\ge2\sqrt{b+c}\)

\(\sqrt{1+a^2}+\sqrt{1+c^2}\ge2\sqrt{a+c}\)

Cộng từng vế, ta được:

\(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\ge\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

12 tháng 10 2018

tự hỏi tự trả lời hử :)