K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

Cô-si ngược dấu thôi~~

Ta có:\(\sqrt{12a+\left(b-c\right)^2}=\frac{1}{\sqrt{12}}\cdot\sqrt{12\left[12a+\left(b-c\right)^2\right]}\)

\(\le\frac{1}{\sqrt{12}}\cdot\frac{12+12a+\left(b-c\right)^2}{2}\)

Tương tự ta có:
\(K\le\frac{1}{\sqrt{12}}\left(\frac{12+12a+\left(b-c\right)^2}{2}+\frac{12+12b+\left(a-c\right)^2}{2}+\frac{12+12c+\left(a-b\right)^2}{2}\right)\)

\(=\frac{1}{\sqrt{12}}\cdot\frac{36+12\left(a+b+c\right)+2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)}{2}\)

Ta có:\(a^2+b^2+c^2\ge ab+bc+ca\) ( tự cm )

\(\Rightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Rightarrow K\le\frac{1}{\sqrt{12}}\cdot36=6\sqrt{3}\)

P/S:Em ko chắc đâu ạ.sợ bị ngược dấu lắm.Nhất là đoạn cuối:((( 

8 tháng 11 2019

\(\sqrt{12a+\left(b-c\right)^2}\le\sqrt{12a+\left(b+c\right)^2}=\sqrt{12a+\left(3-a\right)^2}=a+3\)

:) 

15 tháng 8 2020

\(K\le\Sigma\sqrt{12a+\left(b+c\right)^2}=\Sigma\sqrt{12a+\left(3-a\right)^2}=\Sigma\sqrt{\left(a+3\right)^2}=12\)

dấu "=" xảy ra khi \(a=b=0;c=3\) và các hoán vị

29 tháng 10 2019

Bài này hay:)

c = min {a,b,c}. Đặt

\(a-c=x;b-c=y\Rightarrow x,y\ge0\) và x + y = a + b - 2c \(=3-3c\le3\)

\(\Rightarrow a-b=x-y;c=\frac{3-x-y}{3}\)

\(a=x+c=x+\frac{3-x-y}{3}=\frac{2x-y+3}{3}\)

\(b=y+c=\frac{2y-x+3}{3}\)

Như vậy: \(K=\sqrt{4\left(2x-y+3\right)+y^2}+\sqrt{4\left(2y-x+3\right)+x^2}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)

\(=\sqrt{y^2-4y+8x+12}+\sqrt{x^2-4x+8y+12}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)

Giờ em đang bận, tối em làm tiếp!

NV
29 tháng 10 2019

\(12a+\left(b-c\right)^2=4a\left(a+b+c\right)+b^2-2bc+c^2\)

\(=4a^2+b^2+c^2+4ab+4ac+2bc-4bc\)

\(=\left(2a+b+c\right)^2-4bc\le\left(2a+b+c\right)^2\)

\(\Rightarrow\sqrt{12a+\left(b-c\right)^2}\le2a+b+c\)

Tương tự: \(\sqrt{12b+\left(a-c\right)^2}\le a+2b+c\); \(\sqrt{12c+\left(a-b\right)^2}\le a+b+2c\)

Cộng vế với vế:

\(K\le4\left(a+b+c\right)=12\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị

22 tháng 12 2021

Ta có \(\sqrt{bc\left(1+a^2\right)}=\sqrt{bc+a^2bc}=\sqrt{bc+a\left(a+b+c\right)}\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}\)

Đặt BT đề cho là P

\(\Leftrightarrow P=\sum\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}=\sum\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{b+a}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)

Dấu \("="\Leftrightarrow a=b=c=\sqrt{3}\)

15 tháng 4 2020

chuyển mỗi biểu thức trong cân về cùng bậc 2 ta có:

\(a+\frac{\left(b-c\right)^2}{4}=a\left(a+b+c\right)+\frac{\left(b-c\right)^2}{4}=a^2+a\left(b+c\right)+\frac{\left(b+c\right)^2-4ab}{4}\)

\(=\left(a+\frac{b+c}{2}\right)^2-bc\le\left(a+\frac{b+c}{2}\right)^2\)

\(\Rightarrow\sqrt{a+\frac{\left(b-c\right)^2}{2}}\le a+\frac{b+c}{2}\)

tương tự ta có: \(\hept{\begin{cases}\sqrt{b+\frac{\left(c-a\right)^2}{4}}\le b+\frac{c+a}{2}\\\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le c+\frac{a+b}{2}\end{cases}}\)

cộng theo vế của bđt trên ta được

\(P=\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le2\left(a+b+c\right)=2\)

Vậy GTLN của P=2 đạt được khi a=b=0;c=1 và các hoán vị

22 tháng 5 2023

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ac+bc\right)^2}=ac+bc\)

CMTT : \(\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ad+bd\)

Ta có :\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ac+bc+ad+bd=\left(a+b\right)\left(c+d\right)\)

22 tháng 5 2023

Áp dụng BĐT Bunhiacopxki:

(�2+�2)(�2+�2)≥(��+��)2=��+��

CMTT : (�2+�2)(�2+�2)≥��+��

Ta có :(�2+�2)(�2+�2)+(�2+�2)(�2+�2)≥��+��+��+��=(�+�)(�+�)

9 tháng 10 2017

Đề bài của bạn bị ngược dấu. Phải là \(2\sqrt{ab+bc+ac}\leq \sqrt{3}\sqrt[3]{(a+b)(b+c)(c+a)}\) 

Lời giải:

Lũy thừa 6, BĐT trên tương đương với \(2^6(ab+bc+ac)^3\leq 27[(a+b)(b+c)(c+a)]^2\) \((\star)\)

Thật vậy:

Áp dụng BĐT AM-GM: \((a+b+c)(ab+bc+ac)\geq 3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)

Do đó: \((a+b)(b+c)(c+a)=ab(a+b)+bc(b+c)+ac(a+c)+2abc=(a+b+c)(ab+bc+ac)-abc\)

\(\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}\)

\(\Leftrightarrow (a+b)(b+c)(c+a)\geq \frac{8}{9}(a+b+c)(ab+bc+ac)\)

Suy ra \([(a+b)(b+c)(c+a)]^2\geq \frac{64}{81}(a+b+c)^2(ab+bc+ac)^2\)

Mà theo hệ quả của BĐT AM-GM: \((a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow [(a+b)(b+c)(c+a)]^2\geq \frac{64}{27}(ab+bc+ac)^3\)

hay \(64(ab+bc+ac)^3\leq 27[(a+b)(b+c)(c+a)]^2\)

BĐT \((\star)\) được chứng minh. Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)