K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

\(BDT\Leftrightarrow\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\ge\dfrac{1}{2a+b+c}+\dfrac{1}{2b+c+a}+\dfrac{1}{2c+a+b}\)

Áp dụng BĐT \(\dfrac{1}{nht}+\dfrac{1}{is}+\dfrac{1}{the}+\dfrac{1}{best}\ge\dfrac{16}{nht+is+the+best}\):

\(\dfrac{1}{2a+b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VP\le\dfrac{4}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\)

\("="\Leftrightarrow a=b=c\)

7 tháng 5 2017

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\dfrac{a^2}{2}+\dfrac{b^2}{c}+\dfrac{c^2}{c}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)

\(\Leftrightarrow a^2-\dfrac{a^2}{2}+b^2-\dfrac{b^2}{2}+c^2-\dfrac{c^2}{2}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{a^2+b^2+c^2+ab+bc+ca}{2}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{4}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{4}\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

Tương tự ta có \(\left\{{}\begin{matrix}\left(b+c\right)^2\ge4bc\\\left(c+a\right)^2\ge4ca\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2c+\left(a+b\right)^2\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2a+\left(b+c\right)^2\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2b+\left(c+a\right)^2\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2\left(c+1\right)\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2\left(a+1\right)\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2\left(b+1\right)\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}\le\dfrac{8}{4abc+\left(a+b\right)^2}\\\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}\le\dfrac{8}{4abc+\left(b+c\right)^2}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}\le\dfrac{8}{4abc+\left(c+a\right)^2}\end{matrix}\right.\) (2)

Từ (1) và (2)

\(\Rightarrow VT\ge\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\) (3)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{\left(a+b\right)^2}{4}\ge2\sqrt{\dfrac{2}{c+1}}=\dfrac{4}{\sqrt{2\left(c+1\right)}}\)

Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{\left(b+c\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(a+1\right)}}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(c+a\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(b+1\right)}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\ge\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\)(4)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt{2\left(c+1\right)}\le\dfrac{c+3}{2}\)

\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}\ge\dfrac{8}{c+3}\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2\left(a+1\right)}}\ge\dfrac{8}{a+3}\\\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{b+3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) (5)

Từ điều (3) , (4) , (5)

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2+4abc}+\dfrac{8}{\left(b+c\right)^2+4abc}+\dfrac{8}{\left(c+a\right)^2+4abc}+a^2+b^2+c^2\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) ( đpcm )

AH
Akai Haruma
Giáo viên
27 tháng 9 2018

Lời giải:

\(Q=\frac{ab}{c+ab}+\frac{ac}{b+ac}+\frac{bc}{a+bc}-\frac{1}{4abc}=\frac{ab}{c(a+b+c)+ab}+\frac{ac}{b(a+b+c)+ac}+\frac{bc}{a(a+b+c)+bc}-\frac{1}{4abc}\)

\(=\frac{ab}{(c+a)(c+b)}+\frac{ac}{(b+a)(b+c)}+\frac{bc}{(a+b)(a+c)}-\frac{1}{4abc}\)

\(=\frac{ab(a+b)+ac(a+c)+bc(b+c)}{(a+b)(b+c)(c+a)}-\frac{1}{4abc}\)

\(=\frac{(a+b)(b+c)(c+a)-2abc}{(a+b)(b+c)(c+a)}-\frac{1}{4abc}\) (đẳng thức quen thuộc \((a+b)(b+c)(c+a)=ab(a+b)+bc(b+c)+ca(c+a)+2abc\) )

\(=1-\left(\frac{2abc}{(a+b)(b+c)(c+a)}+\frac{1}{4abc}\right)\)

Áp dụng BĐT AM-GM:

\(\frac{2abc}{(a+b)(b+c)(c+a)}+\frac{1}{108abc}\geq 2\sqrt{\frac{1}{54(a+b)(b+c)(c+a)}}\).

\(2=(a+b)+(b+c)+(c+a)\geq 3\sqrt[3]{(a+b)(b+c)(c+a)}\Rightarrow (a+b)(b+c)(c+a)\leq \frac{8}{27}\)

\(\Rightarrow \frac{2abc}{(a+b)(b+c)(c+a)}+\frac{1}{108abc}\geq \frac{1}{2}\)

\(1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}\)

\(\Rightarrow \frac{13}{54abc}\geq \frac{13}{2}\)

Do đó: \(\frac{2abc}{(a+b)(b+c)(c+a)}+\frac{1}{4abc}\geq 7\)

\(\Rightarrow Q\leq 1-7=-6=Q_{\max}\)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

28 tháng 9 2018

bạn ơi lí do vì sao ở cái biểu thức bạn rút gọn là \(1-\left(\dfrac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\dfrac{1}{4abc}\right)\)

nhưng bạn dùng bđt cô-si lại là

\(\dfrac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\dfrac{1}{108abc}\)

\(\dfrac{1}{4abc}\) bạn không dùng mà bạn lại dùng là \(\dfrac{1}{108abc}\) vậy bạn?

Bạn có thể giải thích rõ chỗ đó cho mình được không bạn?

7 tháng 9 2021

\(\dfrac{bc}{a+b+c+a}\le\dfrac{bc}{4}\cdot\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\ \dfrac{ac}{b+c+a+b}\le\dfrac{ac}{4}\cdot\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)\\ \dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\cdot\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\\ \Leftrightarrow VT\le\dfrac{1}{a+b}\left(\dfrac{bc}{4}+\dfrac{ac}{4}\right)+\dfrac{1}{a+c}\left(\dfrac{bc}{4}+\dfrac{ab}{4}\right)+\dfrac{1}{b+c}\left(\dfrac{ac}{4}+\dfrac{ab}{4}\right)\\ =\dfrac{1}{a+b}\cdot\dfrac{c\left(a+b\right)}{4}+\dfrac{1}{a+c}\cdot\dfrac{b\left(a+c\right)}{4}+\dfrac{1}{b+c}\cdot\dfrac{a\left(b+c\right)}{4}\\ =\dfrac{c}{4}+\dfrac{b}{4}+\dfrac{a}{4}\\ =\dfrac{a+b+c}{4}\left(đfcm\right)\)

5 tháng 10 2017

Chị cx học Tê Tiêu ạ,A mấy ạ

5 tháng 10 2017

A1 em ạ

NV
28 tháng 1 2021

\(P=\dfrac{a^2}{ab+\dfrac{1}{b}}+\dfrac{b^2}{bc+\dfrac{1}{c}}+\dfrac{c^2}{ca+\dfrac{1}{a}}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}}\)

\(P\ge\dfrac{3\left(ab+bc+ca\right)}{ab+bc+ca+\dfrac{ab+bc+ca}{abc}}=\dfrac{3}{1+\dfrac{1}{abc}}=\dfrac{3abc}{1+abc}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

27 tháng 1 2021

Với a, b, c > 0 có:

\(P=\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\\ =\dfrac{a^2}{a\left(b+2c\right)}+\dfrac{b^2}{b\left(c+2a\right)}+\dfrac{c^2}{c\left(a+2b\right)}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\)

chọn \(\alpha=\dfrac{1}{abc}\Rightarrow dpcm\) 

30 tháng 12 2021

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)

CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)

\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

30 tháng 12 2021

Anh ơi! Anh giúp em thêm BĐT ạ! 

https://hoc24.vn/cau-hoi/cho-xyz-0-thoa-man-dfrac1xdfrac1ydfrac1z3-tim-gtln-cua-bieu-thuc-pdfrac1sqrt5x22xy2y2dfrac1sqrt5y22yz2z2dfrac1sqrt5z22xz2x2.4139241594094