K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2021

Với mọi số thực dương a;b;c ta có BĐT:

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Tương tự, ta có:

\(VT\le\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+\dfrac{bc}{bc\left(b^2+c^2\right)+bc}+\dfrac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(VT\le\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\)

Ta lại có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow VT\le\dfrac{xyz}{xy\left(x+y\right)+xyz}+\dfrac{xyz}{yz\left(y+z\right)+xyz}+\dfrac{xyz}{zx\left(z+x\right)+xyz}=1\)

13 tháng 5 2018

Ta có: \(\dfrac{ab}{c+1}=\dfrac{ab}{b+c+a+c}\le\dfrac{1}{4}\left(\dfrac{ab}{b+c}+\dfrac{ab}{a+c}\right)\)

Tương tự cho 2 BĐT còn lại:

\(\dfrac{bc}{a+1}\le\dfrac{1}{4}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ca}{b+1}\le\dfrac{1}{4}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\)

Cộng theo vế các BĐT trên ta có:

\(VT\le\dfrac{1}{4}\left(a+b+c\right)=\dfrac{1}{4}\)

13 tháng 5 2018

mày làm cái lol gì vậy

7 tháng 9 2021

\(\dfrac{bc}{a+b+c+a}\le\dfrac{bc}{4}\cdot\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\ \dfrac{ac}{b+c+a+b}\le\dfrac{ac}{4}\cdot\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)\\ \dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\cdot\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\\ \Leftrightarrow VT\le\dfrac{1}{a+b}\left(\dfrac{bc}{4}+\dfrac{ac}{4}\right)+\dfrac{1}{a+c}\left(\dfrac{bc}{4}+\dfrac{ab}{4}\right)+\dfrac{1}{b+c}\left(\dfrac{ac}{4}+\dfrac{ab}{4}\right)\\ =\dfrac{1}{a+b}\cdot\dfrac{c\left(a+b\right)}{4}+\dfrac{1}{a+c}\cdot\dfrac{b\left(a+c\right)}{4}+\dfrac{1}{b+c}\cdot\dfrac{a\left(b+c\right)}{4}\\ =\dfrac{c}{4}+\dfrac{b}{4}+\dfrac{a}{4}\\ =\dfrac{a+b+c}{4}\left(đfcm\right)\)

5 tháng 3 2017

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bc}{2a+b+c}=\dfrac{bc}{a+b+a+c}\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{ca}{a+2b+c}=\dfrac{ca}{a+b+b+c}\le\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{ab}{a+b+2c}=\dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{bc}{4\left(a+b\right)}+\dfrac{bc}{4\left(a+c\right)}+\dfrac{ca}{4\left(a+b\right)}+\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(a+c\right)}+\dfrac{ab}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\left[\dfrac{bc}{4\left(a+b\right)}+\dfrac{ca}{4\left(a+b\right)}\right]+\left[\dfrac{bc}{4\left(a+c\right)}+\dfrac{ab}{4\left(a+c\right)}\right]+\left[\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(b+c\right)}\right]\)

\(\Rightarrow VT\le\dfrac{bc+ca}{4\left(a+b\right)}+\dfrac{bc+ab}{4\left(a+c\right)}+\dfrac{ca+ab}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{c\left(a+b\right)}{4\left(a+b\right)}+\dfrac{b\left(c+a\right)}{4\left(a+c\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{a+b+c}{4}\)

\(\Leftrightarrow\dfrac{bc}{2a+b+c}+\dfrac{ca}{a+2b+c}+\dfrac{ab}{a+b+2c}\le\dfrac{a+b+c}{4}\) ( đpcm )

AH
Akai Haruma
Giáo viên
31 tháng 10 2021

Lời giải:
Đổi \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\) thì bài toán trở thành

Cho $x,y,z$ thực dương phân biệt tm: $\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$

CMR: $xyz=1$

-----------------------------

Có:

$\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$

$\Leftrightarrow y+\frac{1}{x}=z+\frac{1}{y}=x+\frac{1}{z}$

\(\Rightarrow \left\{\begin{matrix} y-z=\frac{x-y}{xy}\\ z-x=\frac{y-z}{yz}\\ x-y=\frac{z-x}{xz}\end{matrix}\right.\)

\(\Rightarrow (y-z)(z-x)(x-y)=\frac{(x-y)(y-z)(z-x)}{x^2y^2z^2}\)

Mà $x,y,z$ đôi một phân biệt nên $(x-y)(y-z)(z-x)\neq 0$

$\Rightarrow 1=\frac{1}{x^2y^2z^2}$

$\Rightarrow x^2y^2z^2=1$
$\Rightarrow xyz=1$ (do $xyz>0$)

Ta có đpcm.