K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

Note \(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+2\)

Nên ta sẽ đặt \(\dfrac{x}{y}+\dfrac{y}{x}=t\ge2\). Khi đó

\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2+2\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

\(t^2+2\ge3t\Leftrightarrow\left(t-2\right)\left(t-1\right)\ge0\)

BĐT cuối đúng vì \(t\ge 2\)

NV
25 tháng 5 2021

Điều kiện là \(xy\ne0\)

BĐT tương đương:

\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\ge0\)

\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-1\right)\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(x^2+y^2-xy\right)\left(x-y\right)^2}{x^2y^2}\ge0\) (luôn đúng)

3 tháng 8 2023

Có VT = \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{zx}}\)

\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xyz}\left(x+y+z\right)}\) 

\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|=VP\) (Vì x + y + z = 0) 

AH
Akai Haruma
Giáo viên
22 tháng 7 2018

Lời giải:

Nếu $x,y$ trái dấu: Ta thấy vế trái luôn lớn hơn $0$, còn vế phải sẽ nhỏ hơn $0$ do \(x,y\) trái dấu thì \(\frac{x}{y}; \frac{y}{x}< 0\)

Do đó \(\text{VT}> \text{VP}(1)\)

Nếu $x,y$ cùng dấu:

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4-3\left(\frac{x}{y}+\frac{y}{x}\right)=\left(\frac{x}{y}+\frac{y}{x}\right)^2+2-3\left(\frac{x}{y}+\frac{y}{x}\right)\)

\(=t^2+2-3t=(t-1)(t-2)\) với \(t=\frac{x}{y}+\frac{y}{x}\)

Áp dụng BĐT Cô-si cho 2 số dương:

\(t=\frac{x}{y}+\frac{y}{x}\geq 2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

\(\Rightarrow t-1>0; t-2\geq 0\Rightarrow (t-1)(t-2)\geq 0\)

Hay \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\geq 3(\frac{x}{y}+\frac{y}{x})\) (2)

Từ $(1);(2)$ ta có đpcm

Dấu bằng xảy ra khi \(x=y\neq 0\)

24 tháng 6 2017

\(BDT\Leftrightarrow\dfrac{\left(x^2-y^2\right)^2}{x^2y^2}\ge\dfrac{3\left(x-y\right)^2}{xy}\)

\(\Leftrightarrow\dfrac{\left[\left(x-y\right)\left(x+y\right)\right]^2}{x^2y^2}-\dfrac{3\left(x-y\right)^2}{xy}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{\left(x+y\right)^2}{x^2y^2}-\dfrac{3}{xy}\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{\left(x+y\right)^2-3xy}{x^2y^2}\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{x^2+y^2-xy}{x^2y^2}\right)\ge0\) (luôn đúng)

23 tháng 10 2017

bài này em chưa học em mới lớp 7 à anh ơi

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

1. 

PT $\Leftrightarrow y^2+2xy+x^2=x^2+3x+2$

$\Leftrightarrow (x+y)^2=(x+1)(x+2)$

Với $x\in\mathbb{Z}$ dễ thấy rằng $(x+1,x+2)=1$. Do đó để tích của chúng là scp thì $x+1,x+2$ cũng là những scp.

Đặt $x+1=a^2, x+2=b^2$ với $a,b\in\mathbb{N}$

$\Rightarrow b^2-a^2=1\Leftrightarrow (b-a)(b+a)=1$

Với $a,b\in\mathbb{N}$ dễ thấy $b-a=b+a=1$

$\Rightarrow b=1; a=0$

$\Rightarrow x=-1$

$(x+y)^2=(x+1)(x+2)=0\Rightarrow y=-x=1$
Vậy $(x,y)=(-1,1)$

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

2.

Đặt $x-1=a$ thì bài toán trở thành:

Cho $a,y>0$. CMR:

$\frac{1}{a^3}+\frac{a^3}{y^3}+\frac{1}{y^3}\geq 3(\frac{1-2a}{a}+\frac{a+1}{y})$

$\Leftrightarrow \frac{1}{a^3}+\frac{a^3}{y^3}+\frac{1}{y^3}+6\geq \frac{3}{a}+\frac{3a}{y}+\frac{3}{y}$
BĐT trên luôn đúng do theo BĐT AM-GM thì:

$\frac{1}{a^3}+1+1\geq \frac{3}{a}$
$\frac{1}{y^3}+1+1\geq \frac{3}{y}$

$\frac{a^3}{y^3}+1+1\geq \frac{3a}{y}$

Ta có đpcm

Dấu "=" xảy ra khi $a=y=1$

$\Leftrightarrow x=2; y=1$

11 tháng 9 2023

a)\(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{x^2+y^2-2xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\)\(\ge0\)

Vậy \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)

b) ta có: A=\(\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)-\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)=\(\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)-2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

A\(\ge\)\(\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)-2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\)

=\(\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0\)

11 tháng 9 2023