K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi O là giao điểm của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

XétΔABD có

DM,AO là các đường trung tuyến

DM cắt AO tại G

Do đó: G là trọng tâm của ΔABD

b: XétΔABD có

G là trọng tâm

AO là đường trung tuyến

Do đó: \(GA=\dfrac{2}{3}AO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AC=\dfrac{1}{3}AC\)

GA+GC=AC

=>\(GC+\dfrac{1}{3}AC=AC\)

=>\(GC=\dfrac{2}{3}AC\)

\(\dfrac{GC}{GA}=\dfrac{\dfrac{2}{3}AC}{\dfrac{1}{3}AC}=\dfrac{2}{3}:\dfrac{1}{3}=2\)

=>GC=2GA

c: Xét ΔGAI và ΔGCK có

\(\widehat{GAI}=\widehat{GCK}\)(hai góc so le trong, AI//CK)

\(\widehat{AGI}=\widehat{CGK}\)

Do đó: ΔGAI đồng dạng với ΔGCK

=>\(\dfrac{GA}{GC}=\dfrac{GI}{GK}\)

=>\(\dfrac{GI}{GK}=\dfrac{1}{2}\)(1)

Xét ΔAEG và ΔCFG có

\(\widehat{AEG}=\widehat{CFG}\)

\(\widehat{AGE}=\widehat{CGF}\)

Do đó: ΔAEG đồng dạng với ΔCFG

=>\(\dfrac{GA}{GC}=\dfrac{GE}{GF}=\dfrac{1}{2}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{GI}{GK}=\dfrac{GE}{GF}\)

Xét ΔGIE và ΔGKF có

\(\dfrac{GI}{GK}=\dfrac{GE}{GF}\)

\(\widehat{IGE}=\widehat{KGF}\)

Do đó: ΔGIE đồng dạng với ΔGKF

=>\(\widehat{GIE}=\widehat{GKF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên EI//FK

11 tháng 12 2023

a: Gọi O là giao điểm của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔABD có

AO,DM là các đường trung tuyến

AO cắt DM tại G

Do đó: G là trọng tâm của ΔABD

b: Xét ΔABD có

AO là đường trung tuyến

G là trọng tâm

Do đó: \(AG=\dfrac{2}{3}\cdot AO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AC=\dfrac{1}{3}AC\)

Ta có: CG+GA=CA

=>\(GA+\dfrac{1}{3}AC=AC\)

=>\(GA=\dfrac{2}{3}AC\)

\(\dfrac{AG}{GA}=\dfrac{\dfrac{1}{3}AC}{\dfrac{2}{3}AC}=\dfrac{1}{3}:\dfrac{2}{3}=\dfrac{1}{2}\)

=>GA=2AG

22 tháng 11 2019

k đúng cho tôi đi

22 tháng 11 2019

( Bạn tự vẽ hình nha )

a) Xét tứ giác AEDF có :

DE // AB

DF // AC

=> AEDF là hình bình hành ( dấu hiệu nhận biết )

Xét hình bình hành AEDF có : 

AD là phân giác của góc BAC

=> EFGD là hình thoi ( dấu hiệu nhận biết )

b) XÉt tứ giác EFGD có :

FG // ED ( AF //ED )

FG = ED ( AF = ED )

=> EFGD là hình bình hành ( dấu hiệu nhận biết )

c) Nối G với I 

+) XÉt tứ giác AIGD có :

F là trung điểm của AG

F là trung điểm của ID

=> AIGD là hình bình hành ( dấu hiệu nhận biết ) 

=> GD // IA hay GD // AK ( tính chất  )

+) Xét tứ giác AKDG có :

GD // AK 

AG // Dk ( AF // ED ) 

=> AKDG là hình bình hành ( dấu hiệu )

+) xtes hinhnf bình hành AKDG có :

AD và GK là 2 đường chéo 

=> AD và GK cắt nhau tại trung điểm mỗi đường 

Mà O là trung điểm của AD ( vì AFDE là hình thoi )

=> O là trung điểm của GK

=> ĐPCM

a: Xét tứ giác AMCn có

AM//Cn

AM=CN

=>AMCN là hình bình hành

b; Xét ΔBAE có

M là trung điểm của BA

MF//AE

=>F là trung điểm của BE

=>BF=FE

Xét ΔDFC có

N là trung điểm của DC

NE//FC

=>E là trung điểm của DF

=>DE=EF=FB

loading...  loading...  loading...  

13 tháng 9 2023

cảm ơn bạn nhưng chữ bạn hơi xấu nhe

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3, cho...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

14 tháng 3 2022

giải giúp mik với