K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

b: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

=>MN=AH

mà AH=4,8cm

nên MN=4,8cm

13 tháng 12 2023

a) Để tính BC, ta sử dụng định lý Pythagoras trong tam giác vuông ABC:

BC^2 = AB^2 + AC^2

BC^2 = 6^2 + 8^2

BC^2 = 36 + 64

BC^2 = 100

BC = √100

BC = 10 cm

 

Để tính AH, ta sử dụng công thức diện tích của tam giác:

S = 1/2 * AB * AH

S = 1/2 * 6 * AH

S = 3AH

 

Vì tam giác ABC là tam giác vuông, nên diện tích tam giác ABC cũng có thể tính bằng cách sử dụng công thức diện tích tam giác vuông:

S = 1/2 * AB * AC

S = 1/2 * 6 * 8

S = 24

 

Vậy, ta có phương trình:

3AH = 24

AH = 8 cm

 

b) Để tính MN, ta sử dụng tỷ lệ giữa các đoạn thẳng trong tam giác đồng dạng. Ta có:

MN/BC = HM/AB = HN/AC

 

Vì HM và HN là đường cao của tam giác ABC, nên ta có:

HM = AH = 8 cm

HN = AH = 8 cm

 

Vậy, ta có:

MN/10 = 8/6

MN = (8/6) * 10

MN = 80/6

MN ≈ 13.33 cm

22 tháng 7 2018

a, \(\Delta ABC,\hat{BAC}=90^o\)

\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)

\(\Leftrightarrow10^2=6^2+AC^2\)

\(\Leftrightarrow AC^2=64\)

\(\Leftrightarrow AC=8\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\) ta có:

\(AB^2=BH.BC\Leftrightarrow6^2=BH.10\Leftrightarrow BH=3,6\left(cm\right)\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)\(\Leftrightarrow AH^2=\frac{576}{25}\Leftrightarrow AH=4,8\left(cm\right)\)

Chu vi tam giác ABC: 6 + 10 + 8 = 24 (cm)

Diện tích tam giác ABC: \(\frac{4,8.10}{2}=24\left(cm^2\right)\)

22 tháng 7 2018

2 câu kia mình nghĩ sau

a: ΔAHB vuông tại H có HM là đường cao

nên AM*MB=HM^2

ΔAHC vuông tại H có HN là đường cao

nên AN*NC=NH^2

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

=>MN^2=HM^2+HN^2

=AM*MB+AN*NC

b: ΔABC vuông tạiA có AH là đường cao

nên \(AB^2=BH\cdot BC;AC^2=CH\cdot CB\)

=>\(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

hay \(AH=\dfrac{AB\cdot AC}{BC}\)

Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(BH^2=BM\cdot BA\)

hay \(BM=\dfrac{BH^2}{BA}\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(CH^2=CN\cdot CA\)

hay \(CN=\dfrac{CH^2}{CA}\)

Ta có: \(BM\cdot CN\cdot AH\)

\(=\dfrac{BH^2\cdot CH^2}{AB\cdot AC}\cdot\dfrac{AB\cdot AC}{BC}\)

\(=BC^3\)

a: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

c:

Xét tứ giác ANHM có

góc ANH=góc AMH=góc MAN=90 độ

=>ANHM là hình chữ nhật

AD vuông góc MN

=>góc DAC+góc ANM=90 độ

=>góc DAC+góc AHM=90 độ

=>góc DAC+góc ABC=90 độ

=>góc DAC=góc DCA

=>DA=DC 

góc DAC+góc DAB=90 độ

góc DCA+góc DBA=90 độ

mà góc DAC=góc DCA

nên góc DAB=góc DBA

=>DA=DB

=>DB=DC

=>D là trung điểm của BC

11 tháng 12 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác ABC vuông tại A, đường cao AH có:

B C 2 = A B 2 + A C 2 = 25 ⇒ BC = 5(cm)

AB2 = BH.BC ⇒ BH = AB2/BC = 9/5 = 1,8(cm)

BH + CH = BC⇒ CH = BC - BH = 5 - 1,8 = 3,2 (cm)

A H 2 = BH.CH ⇒ AH = B H . C H = 1 , 8 . 3 , 2 = 2,4 (cm)

Xét tứ giác AMHN có:

∠(MAN) = ∠(ANH) = ∠(AMH) = 90 0

⇒ Tứ giác AMHN là hình chữ nhật

⇒ MN = AH = 2,4 (cm)