K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

 x=1 nha bạn

22 tháng 9 2020

Ta có 1/2 - ( 1/3 + 3/4) <= x <1/24 - ( 1/8 - 1/3 )

=>   6/12 - ( 4/12 + 9/12 ) <= x <= 1/24 - ( 3/24 - 8/24 )

=>   6/12 - 13/12 <= x <= 1/24 + 5/24

=>   -7/12 <= x <= 3/12

=>   -7 <=  12x <= 3

=>   x ko tồn tại

24 tháng 9 2020

1/3– 3/5 + 5/7 –7/9 + 9/11 – 11/13 + 13/15 + 11/13 – 9/11 + 7/9 –5/7 + 3/5 –1/3

9 tháng 1 2016

Theo đề ta có: /x/ là số dương

                       /y/ là số dương

=> /x/+/y/ là số dương

Mà /x/+/y/ bé hơn hoặc bằng 3 nên /x/+/y/={0;1;2;3}

TH1: /x/+/y/=0 => x=y=0

TH2: /x/+/y/=1 => x={-1;0;1};y={-1;0;1}

TH3 /x/+/y/=2 => x={-2;-1;0;1;2);y={-2;-1;0;1;2}

TH4: /x/+/y/=3 => x={-3;-2;-1;0;1;2;3};y={-3;-2;-1;0;1;2;3}

 

                     

                       

9 tháng 1 2016

vì /x/ + /y/ < hoặc = 3

=> /x + y/ < hoặc = 3

=> /x +y/ = { 3 ; 2 ; 1; 0}

=> x+y ={ 3; -3; 2; -2 ; 1 ; -1; 0}

* nếu x+y= 3==> x+y= 3+0= 0+3= 1+2=2+1

x={ 3 ;0;1; 2}          y={ 0;3;2;1} 

các mục nếu khác tương tự nha bạn tick cho mình nha

1 tháng 8 2017

a,

\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)

Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)

d,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)

1 tháng 8 2017

Bạn mới hỏi ở dưới rồi :v