K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Ta có: \(P=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)

\(=\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=\frac{\left(x-1\right)\left(y-1\right)}{xy}\left(1+\frac{1}{xy}+\frac{1}{x}+\frac{1}{y}\right)\)

\(=\frac{xy}{xy}\left(1+\frac{1}{xy}+\frac{1}{xy}\right)\)

\(=1+\frac{2}{xy}\)

Lại có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow P=1+\frac{2}{xy}\ge1+8=9\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

30 tháng 12 2016

Ta có

\(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z+1\right)^2\ge0\end{cases}}\)và \(\hept{\begin{cases}x^2+1>0\\y^2+1>0\\z^2+1>0\end{cases}}\)

\(\Rightarrow A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\ge0\)

Kết hợp với điều kiện ban đầu thì

GTNN của A là 0 đạt được khi 

\(\left(x,y,z\right)=\left(-1,-1,5;-1,5,-1;5,-1-1\right)\)

13 tháng 4 2018

Ta có: \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=\frac{1}{2}\left(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\right)\left(1^2+1^2\right)\)

Áp dụng BĐT Bunhiacoxki có: 

\(A=\frac{1}{2}\left(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\right)\left(1^2+1^2\right)\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)

=> \(A\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\)

Theo BĐT Cauchy thì: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

=> \(A\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{1}{2}\left(1+\frac{4}{1}\right)^2=\frac{25}{2}\)

=> \(A_{min}=\frac{25}{2}\)

Dấu "=" xảy ra khi x=y=1/2

10 tháng 5 2019

Chứng minh BĐT phụ:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Giờ thì chứng minh thôi:3

Áp dụng BĐT Cauchy-schwarz dạng engel ta có:

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)

26 tháng 5 2019

Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)

=> Min P=18

27 tháng 4 2021

\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+\frac{1}{x^2y^2}+2\)

Áp dụng BĐT Cô-si cho 2 số không âm ta có:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)

\(\frac{255}{256x^2y^2}\ge\frac{255}{256\cdot\frac{\left(x+y\right)^4}{16}}=\frac{255}{256\cdot\frac{1}{16}}=\frac{255}{16}\)

\(\Rightarrow P\ge\frac{1}{8}+\frac{255}{16}+2\ge\frac{289}{16}\) 

Đẳng thức xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

18 tháng 11 2019

Lúc trước gặp bài này trng toán tuổi thơ rồi, để lục lại. Mà hình như t cũng có làm đâu đó trên olm rồi thì phải:3

9 tháng 1 2020

We have:

\(A=\Sigma_{cyc}\frac{1}{3xy+3zx+x+y+z}\le\frac{1}{3xy+3zx+3\sqrt[3]{xyz}}=\Sigma_{cyc}\frac{1}{3xy+3zx+3}=\Sigma_{cyc}\frac{1}{3\left(xy+zx+1\right)}\)

Dat \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)

\(\Rightarrow A\le\Sigma_{cyc}\frac{1}{3\left(\frac{1}{ab}+\frac{1}{ca}+1\right)}=\Sigma_{cyc}\frac{a}{3\left(a+b+c\right)}=\frac{1}{3}\)

Dau '=' xay ra khi \(x=y=z=1\)