K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

đề sai à làm gì có thể loại đề nào mà 2<x<1

14 tháng 6 2017

\(\sqrt{6}\approx2.45\) mà bạn

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/voi-0-xy-dfrac12-chung-minhdfracsqrtxy1dfracsqrtyx1-dfrac2sqrt23.461470553384

NV
7 tháng 5 2020

\(VT\le\frac{x^2+16-y}{2}+\frac{y+16-x^2}{2}=\frac{32}{2}=16\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x\ge0\\y=16-x^2\end{matrix}\right.\)

20 tháng 5 2017

Đề phải cho \(x,y\) dương nữa!

Giải:

Ta có: \(xy\left(x+y\right)^2\le\dfrac{1}{64}\)

\(\Leftrightarrow\sqrt{xy\left(x+y\right)^2}\le\sqrt{\dfrac{1}{64}}\)

\(\Leftrightarrow\sqrt{xy}\left(x+y\right)\le\dfrac{1}{8}\)

Vậy ta cần chứng minh BĐT tương đương \(\sqrt{xy}\left(x+y\right)\le\dfrac{1}{8}\)

Áp dụng BĐT AM - GM ta có:

\(\sqrt{xy}\left(x+y\right)=\dfrac{1}{2}.2\sqrt{xy}\left(x+y\right)\)

\(\le\dfrac{1}{2}.\dfrac{x+y+2\sqrt{xy}}{4}=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^4}{8}\) \(=\dfrac{1}{8}\)

\(\Rightarrow xy\left(x+y\right)^2\le\dfrac{1}{64}\) (Đpcm)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{4}\)

1 tháng 6 2018

cho mình hỏi \(\dfrac{1}{2}\) ở đâu vậy bạn

24 tháng 11 2019

Nhẩm điểm rơi rồi xơi:)

\(\sqrt{1.x}+\sqrt{1\left(y-1\right)}+\sqrt{1\left(z-2\right)}\)]

\(\le\frac{x+1}{2}+\frac{1+y-1}{2}+\frac{1+z-2}{2}=\frac{x+y+z}{2}\)

Đẳng thức xảy ra khi x = 1; y = 2; z = 3

24 tháng 3 2020

Theo bài ra ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\Rightarrow x+y+z=xyz\)

Do:\(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự: \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\);

\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(z+y\right)\left(x+y\right)}\)

\(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\)

\(A=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng bất đẳng thức Cô si \(\frac{a+b}{2}\ge\sqrt{ab}\), dấu "=" xảy ra khi \(a=b\)

Ta có \(\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\);

\(\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\);

\(\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\le\frac{1}{2}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(A\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{y+x}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy \(A\le\frac{3}{2}\). Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

24 tháng 3 2020

M giải thích cho t chỗ sao mà \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\) đc vậy?

Với cả từ dòng này xuống dòng này nữa.

Violympic toán 8

Sao mà tin đc dấu " = " xảy ra khi nào vậy?

Violympic toán 8

10 tháng 11 2019

P/s : hướng dẫn giải

\(x^2+y^2=x+y\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=\frac{1}{2}\)

Tiếp tục đặt ẩn phụ \(a=x-\frac{1}{2};b=y-\frac{1}{2}\)

Lúc đó ta sẽ chuyển về tìm Min , Max của \(F=a+2b+\frac{3}{2}\)

Ta có : \(a^2+b^2=\frac{1}{2}\) . Áp dụng bất đẳng thức Bunhiacôpsky ta có :

\(\left(a+2b\right)^2=\left(1.a+2.b\right)^2\le\left(1+4\right)\left(a^2+b^2\right)=\frac{5}{2}\)

\(\Rightarrow\frac{3-\sqrt{10}}{2}\le F\le\frac{3+\sqrt{10}}{2}\)

NV
29 tháng 4 2020

\(VT\le\sqrt{2\left(1+2x+1+2y\right)}=2\sqrt{1+x+y}\)

\(VT\le2\sqrt{1+\sqrt{2\left(x^2+y^2\right)}}=2\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=1\)

9 tháng 6 2018

Sử dụng BĐT AM-GM, ta có: 

\(x^3+y^2\ge2yx\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)

Tương tự cộng lại suy ra: 

\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

14 tháng 6 2017

\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)

\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)

\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)