K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

\(\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le0\)

\(\Leftrightarrow xyz-2\left(xy+yz+xz\right)+4\left(x+y+z\right)-8\le0\)

\(\Leftrightarrow-2\left(xy+yz+xz\right)\le8-4\left(x+y+z\right)-xyz=8-4.3+0=-4\left(xyz\ge0\right)\)

\(A=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+xz\right)\le3^2-4=5\)

\(max_A=5\Leftrightarrow\left\{{}\begin{matrix}xyz=0\\\left(x-2\right)\left(y-2\right)\left(z-2\right)=0\\x+y+z=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x;y;z\right)=\left\{0;1;2\right\}\) \(và\) \(các\) \(hoán\) \(vị\)

 

14 tháng 5 2021

hiiiii

29 tháng 7 2021

rg

20 tháng 8 2020

Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)

Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)

\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)

Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)

Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng

Như vậy (3),(4) đúng => (2) đúng

Từ đó suy ra \(T\ge\frac{4}{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)

11 tháng 5 2019

Em có cách này anh/chị check thử ạ.

Dự đoán xảy ra cực trị tại: x = 2; y = 1; z = 0

Áp dụng BĐT quen thuộc: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\),ta có: \(1\ge\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\ge\frac{9}{x+y+z+6}\)

\(\Rightarrow x+y+z+6\ge9\Leftrightarrow x+y+z\ge3\)

Đặt \(t=x+y+z\ge3\).Ta cần tìm min của: \(P\left(t\right)=t+\frac{1}{t}\) với \(t\ge3\)

Ta có: \(P\left(t\right)=t+\frac{1}{t}=\left(\frac{t}{9}+\frac{1}{t}\right)+\frac{8t}{9}\)

\(\ge2\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8t}{9}=\frac{2}{3}+\frac{8t}{9}\ge\frac{2}{3}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}t=3\\\frac{1}{x+1}=\frac{1}{y+2}=\frac{1}{z+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\x+1=y+2=z+3=3\left(2\right)\end{cases}}\)

Giải (2) ta được x = 2; y = 1; z = 0 (t/m x + y + z = 3)

Vậy \(P_{min}=\frac{10}{3}\Leftrightarrow x=2;y=1;z=0\)

15 tháng 4 2016

Theo giả thiết ta có : \(x+yz=yz-z-1=\left(z-1\right)\left(y+1\right)=\left(x+y\right)\left(y+1\right)\)

Tương tự : \(y+zx=\left(x+y\right)\left(x+1\right)\)

Và \(z+xy=\left(x+1\right)\left(y+1\right)\)

Nên \(P=\frac{x}{\left(x+y\right)\left(y+1\right)}+\frac{y}{\left(x+y\right)\left(x+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

            \(=\frac{x^2+y^2+x+y}{\left(x+y\right)\left(x+1\right)\left(y+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\left(x+1\right)\left(y+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)

nên \(P\ge\frac{2\left(x+y\right)^2+4\left(x+y\right)}{\left(x+y+2\right)^2\left(x+y\right)}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}=\frac{2\left(x+y\right)+4}{\left(x+y+2\right)^2}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}\)

                                                       \(=\frac{2}{z+1}+\frac{4\left(z^2+2\right)}{\left(z+1\right)^2}=f\left(z\right);z>1\)

Lập bảng biến thiên ta được \(f\left(z\right)\ge\frac{13}{4}\) hay min \(P=\frac{13}{4}\) khi \(\begin{cases}z=3\\x=y=1\end{cases}\)

NV
30 tháng 12 2020

Chắc bạn ghi nhầm căn thức thứ 2

\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)

\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)

\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)

\(A\le18\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=z=4\)