K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2019

Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)

\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)

=> \(A\ge-\frac{2}{3}\)

\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)

16 tháng 5 2019

Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a

c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

KL:.............................

 
30 tháng 4 2023

 Ta có \(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2=2xy+1\)

 Từ đó \(P=\dfrac{\left(x+y\right)^2}{x+y+1}\). Đặt \(x+y=t\left(t\ge0\right)\). Vì \(x+y\le\sqrt{2\left(x^2+y^2\right)}=2\) nên \(t\le\sqrt{2}\). ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{\sqrt{2}}\). Ta cần tìm GTLN của \(P\left(t\right)=\dfrac{t^2}{t+1}\) với \(0\le t\le\sqrt{2}\)

 Giả sử có \(0\le t_1\le t_2\le\sqrt{2}\). Ta có BDT luôn đúng \(\left(t_2-t_1\right)\left(t_2+t_1+t_2t_1\right)\ge0\) \(\Leftrightarrow t_2^2-t_1^2+t_2^2t_1-t_2t_1^2\ge0\) \(\Leftrightarrow t_1^2\left(t_2+1\right)\le t_2^2\left(t_1+1\right)\) \(\Leftrightarrow\dfrac{t_1^2}{t_1+1}\le\dfrac{t_2^2}{t_2+1}\) \(\Leftrightarrow P\left(t_1\right)\le P\left(t_2\right)\).  Như vậy với \(0\le t_1\le t_2\le\sqrt{2}\) thì \(P\left(t_1\right)\le P\left(t_2\right)\). Do đó P là hàm đồng biến. Vậy GTLN của P đạt được khi \(t=\sqrt{2}\) hay \(x=y=\dfrac{1}{\sqrt{2}}\), khi đó \(P=2\sqrt{2}-2\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
$P=\frac{2xy+1}{x+y+1}=\frac{2xy+x^2+y^2}{x+y+1}=\frac{(x+y)^2}{x+y+1}$

$=\frac{a^2}{a+1}$ với $x+y=a$

Áp dụng BĐT AM-GM:

$1=x^2+y^2\geq \frac{(x+y)^2}{2}=\frac{a^2}{2}$

$\Rightarrow a^2\leq 2\Rightarrow a\leq \sqrt{2}$

$P=\frac{a^2}{a+1}=\frac{a}{1+\frac{1}{a}}$
Vì $a\leq \sqrt{2}\Rightarrow 1+\frac{1}{a}\geq 1+\frac{1}{\sqrt{2}}=\frac{2+\sqrt{2}}{2}$

$\Rightarrow P\leq \frac{\sqrt{2}}{\frac{2+\sqrt{2}}{2}}=-2+2\sqrt{2}$

Vậy $P_{\max}=-2+2\sqrt{2}$ khi $x=y=\frac{1}{\sqrt{2}}$

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

NV
28 tháng 12 2020

Không nhìn thấy bất cứ chữ nào của đề bài cả 

15 tháng 2 2017

Đặt xy = a .

Ta có x + y = 1  => x^3 + y^3 = 1 - 3xy ( mũ 3 hai vế ) 

* Ta có a = xy \(\le\) \(\frac{\left(x+y\right)^2}{4}\) = \(\frac{1}{4}\) 
=> P = \(\frac{1}{1-3xy}\)+\(\frac{1}{xy}\)= \(\frac{1-2a}{a-3a^2}\)

Để tìm min P thì ta tìm max \(\frac{1}{P}\)= Q <=> Q =  \(\frac{a-3a^2}{1-2a}\)

  Đặt A=(a-3a^2 )/(1-2a)
<=> A-2Aa=a-3a^2
<=> 3a^2 -a(1+2A)+A=0
Giải delta >=0 là 1 biểu thức theo A
từ đó tìm được min và max A

12 tháng 5 2018

Ta có : \(A=xy+\frac{1}{xy}=\left(16xy+\frac{1}{xy}\right)-15xy\)

Áp dụng bất đẳng thức Cauchy , ta có :

\(16xy+\frac{1}{xy}\ge2.\sqrt{16xy.\frac{1}{xy}}=8\)

Suy ra \(A\ge8-15xy\)

Ta lại có  \(xy\le\frac{\left(x+y\right)^2}{4}\)

<=> \(15xy\le\frac{15.1}{4}=\frac{15}{4}\)

<=> \(-15xy\ge\frac{15}{4}\)

Suy ra \(A\ge8-\frac{15}{4}=\frac{17}{4}\)

Đẳng thức xảy ra <=> x = y = \(\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy$

$\Rightarrow 3(x^2+y^2)\geq 6xy$

$x^2+9\geq 2\sqrt{9x^2}=2|3x|\geq 6x$

$y^2+9\geq 2\sqrt{9y^2}=2|3y|\geq 6y$

Cộng theo vế các BĐT trên:

$4(x^2+y^2)+18\geq 6(xy+x+y)=90$

$\Rightarrow x^2+y^2=18$

Vậy $A_{\min}=18$ khi $(x,y)=(3,3)$

AH
Akai Haruma
Giáo viên
20 tháng 6 2021

Sầu Riêng: của em nếu $x,y$ dương thì đúng. Còn trong bài $x,y$ thực thì đến đoạn $(x+y+2)^2\geq 64$ thì không khẳng định $x+y\geq 6$ được nha.

29 tháng 3 2019

Áp dụng bđt Cô-si \(1=x^2+y^2\ge2xy\)

              \(\Rightarrow xy\le\frac{1}{2}\)

Ta có \(A=\frac{-2xy}{1+xy}\ge\frac{-\frac{2.1}{2}}{1+\frac{1}{2}}=-\frac{2}{3}\)

\("="\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)