K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I. Tính đơn điệu của hàm sốHãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:Luyện tập   Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:Hàm số giảm trong khoảng nào dưới đây?(0;\pi)(0;π)(-\dfrac{\pi}{2};0)(−2π​;0)(\pi;\dfrac{3\pi}{2})(π;23π​)(-\dfrac{\pi}{2};\dfrac{\pi}{2})(−2π​;2π​)Kiểm tra1. Định nghĩa:Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm...
Đọc tiếp
I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

sdddssKiểm traI. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập   

Cho đồ thị hàm số y=\cos x như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(-\dfrac{\pi}{2};0)(\pi;\dfrac{3\pi}{2})(-\dfrac{\pi}{2};\dfrac{\pi}{2})Kiểm tra1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right) xác định trên K. Ta nói

Hàm số y=f\left(x\right) đồng biến (tăng) trên K nếu với mọi cặp x_1,x_2\in K mà x_1< x_2 thì f\left(x_1\right)< f\left(x_2\right);

Hàm số y=f\left(x\right) nghịch biến (giảm) trên K nếu với mọi cặp  mà x_1,x_2\in K mà x_1< x_2  thì f\left(x_1\right)>f\left(x_2\right).

Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right) đồng biến trên K \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K (x_1\ne x_2);

    f\left(x\right) nghịch biến trên K   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K​ (x_1\ne x_2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập   

Cho hàm số y=-\dfrac{x^2}{2} với đồ thị như sau. Hàm số có đạo hàm y'=-x

Trên khoảng \left(-\infty;0\right) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0 với mọi x thuộc K thì hàm số f\left(x\right) đồng biến trên K.

b) Nếu f'\left(x\right)< 0 với mọi x thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập   

Xét hàm số y=\sin x trên khoảng \left(0;2\pi\right) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin x đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\left(0;\dfrac{3\pi}{2}\right)\left(0;\dfrac{\pi}{2}\right)\left(\dfrac{3\pi}{2};2\pi\right)Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right) có đạo hàm trên K. Nếu f'\left(x\right)\ge0 (hoặc f'\left(x\right)\le0), \forall x\in K và f'\left(x\right)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}. Vậy hàm số đồng biến trên \mathbb{R}.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right). Tìm các điểm x_1,x_2,...,x_n mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_n theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập   

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2.

1) Tập xác định: \mathbb{R}.

2) y'=x^2-x-2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right) và \left(2;+\infty\right).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right).

 

Kiểm tra

 

4
14 tháng 10 2021

có vẻ ngắn

14 tháng 10 2021

đọc hết thanh xuân

11 tháng 2 2017

Đáp án B

Từ đồ thị hàm số ta thấy:

+ Hàm số đồng biến trên khoảng (-3;-1)

10 tháng 6 2017

Đáp án A

30 tháng 6 2017

Đáp án A

20 tháng 6 2019

22 tháng 5 2017

24 tháng 6 2019

16 tháng 11 2018

Đáp án là D

Quan sát đồ thị hàm số ta thấy trong khoảng (-1;0) thì đồ thị hàm số đi lên hàm số đồng biến trong khoảng (-1;0)

28 tháng 9 2019

Chọn D

7 tháng 6 2019

Chọn đáp án B.

Phương pháp

Dựa vào đồ thị hàm số, xác định khoảng mà trong khoảng đó theo chiều từ trái sang phải đồ thị hàm số luôn đi lên.

Cách giải

Dựa vào đồ thị hàm số ta thấy hàm số y=f(x) đồng biến trên khoảng (0;+∞)

1 tháng 2 2019

Đáp án D

Phương pháp:

Sử dụng kĩ thuật đọc đồ thị hàm số. Các khoảng đồ thị hàm số đi lên là các khoảng đồng biến của hàm số.

Cách giải:

Quan sát đồ thị hàm số ta thấy trong khoảng (-1;0) thì đồ thị hàm số đi lên hàm số đồng biến trong khoảng (-1;0)