K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Xét tam giác ABD có

M, N tương ứng là trung điểm của AB, AD

\( \Rightarrow \) MN là đường trung bình của tam giác ABD 

\( \Rightarrow \)  MN // BD mà BD \( \bot \) BC (\(\widehat {CBD} = {90^0}\))

\( \Rightarrow \) MN \( \bot \) BC.

b) Vì G, K tương ứng là trọng tâm của các tam giác ABC, ACD nên \(\frac{{CG}}{{CM}} = \frac{{CK}}{{CN}} = \frac{2}{3}\)

\( \Rightarrow \) GK // MN (Định lý Talet) mà MN \( \bot \) BC

\( \Rightarrow \) GK \( \bot \) BC.

1 tháng 7 2017

a) và b) Chứng minh nhờ tính chất đường trung bình của tam giác

c) Để chứng minh MNQR là ngũ giác đều ta cần chứng minh hai điều : Hình đó có tất cả các cạnh bằng nhau và có tất cả các góc bằng nhau.

Đa giác. Đa giác đều

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.Bài 6. Cho tứ giác ABCD có hai đường chéo cắt...
Đọc tiếp

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

9
28 tháng 3 2020

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

28 tháng 3 2020

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)

11 tháng 3 2021

A B C D F E K H G O M

Bài toán thiếu dữ kiện là điểm O. (Có khả năng O là tâm đường tròn ngoại tiếp tam giác ABC). Bạn xem lại đề bài có phải thế không?

a/ Nối B với O cắt đường tròng tại K ta có

\(\widehat{BCK}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow CK\perp BC\)

\(AH\perp BC\) (AH là đường cao của tg ABC)

=> AH//CK (cùng vuông góc với BC) (1)

Ta có

\(\widehat{BAK}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AK\perp AB\)

\(CH\perp AB\) (CH là đường cao của tg ABC)

=> AK//CH (cùng vuông góc với AB) (2)

Từ (1) và (2) => AKCH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một thì tứ giác đó là hbh)

=> AH=CK (Trong 1 hbh các cặp cạnh đối bàng nhau từng đôi một)

Xét \(\Delta BCK\) có

OB=OK; BM=CM => OM là đường trung bình của tg BCK \(\Rightarrow OM=\frac{1}{2}CK\) mà \(AH=CK\Rightarrow OM=\frac{1}{2}AH\left(dpcm\right)\)

b/

Do OM là đường trung bình của tg BCK nên OM//CK mà CK//AH => OM//AH

Gọi G' là giao của AM với HO. Xét tg AHG' và tg MOG' có

\(\widehat{HAG'}=\widehat{OMG'}\) (góc so le trong)

\(\widehat{AG'H}=\widehat{MG'O}\) (góc đối đỉnh)

=> tg AHG' đồng dạng với tg MOG' \(\Rightarrow\frac{MG'}{AG'}=\frac{OM}{AH}=\frac{1}{2}\)

G' thuộc trung tuyến AM của tg ABC => G' là trọng tâm của tg ABC => G' trùng G => H,G,O nằm trên 1 đường thẳng (dpcm)

1: Xet ΔBCA có

E,D lần lượt là trung điểm của AB,AC

nên ED là đừog trung bình

=>ED//BC và ED=BC/2

Xét ΔGBC có

N,M lần lượt là trung điểm của GB,GC

nên NM là đường trung bình

=>NM//BC và NM=BC/2

=>ED//MN và ED=MN

=>EDMN là hình bình hành

MN+DE=BC/2+BC/2=BC<AB+AC

2 Để MNED là hình chữ nhật thì ED vuông góc EN

=>AG vuông góc BC

=>ΔABC cân tại A

=>AB=AC

3: NK=5NB

=>BK=6BN

=>BK=2BD

->D là trung điểm của BK

Xét tứ giác ABCK có

D là trung điểm chung của AC và BK

=>ABCK là hình bình hành

=>AK//BC

29 tháng 1 2023

Thanks b nha :))

 

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có:

\(\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AD}  + \overrightarrow {DN} \)

Mặt khác: \(\overrightarrow {MN}  = \overrightarrow {MB}  + \overrightarrow {BC}  + \overrightarrow {CN} \)

\(\begin{array}{l} \Rightarrow 2\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AD}  + \overrightarrow {DN}  + \overrightarrow {MB}  + \overrightarrow {BC}  + \overrightarrow {CN} \\ \Leftrightarrow 2\overrightarrow {MN}  = \left( {\overrightarrow {MA}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {DN}  + \overrightarrow {CN} } \right) + \overrightarrow {BC}  + \overrightarrow {AD} \\ \Leftrightarrow 2\overrightarrow {MN}  = \overrightarrow 0  + \overrightarrow 0  + \overrightarrow {BC}  + \overrightarrow {AD} \\ \Leftrightarrow 2\overrightarrow {MN}  = \overrightarrow {BC}  + \overrightarrow {AD} \end{array}\)

Lại có: 

\(\overrightarrow {BC}  + \overrightarrow {AD}  = \overrightarrow {BD}  + \overrightarrow {DC}  + \overrightarrow {AD}  = \overrightarrow {AD}  + \overrightarrow {DC} + \overrightarrow {BD}  = \overrightarrow {AC}  + \overrightarrow {BD} .\)

Vậy \(\overrightarrow {BC}  + \overrightarrow {AD}  = 2\overrightarrow {MN}  = \;\overrightarrow {AC}  + \overrightarrow {BD} .\)