K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 1

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4})(1+1+1)\geq (\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})^2(1)$

$(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})(1+1+1)\geq (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2(2)$

$(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})(a+b+c)\geq (1+1+1)^2$

$\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}=9$(3)$

Từ $(1); (2); (3)$ suy ra:
$\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}\geq \frac{9^4}{27}=243$
Vậy GTNN của biểu thức là 243 khi $a=b=c=\frac{1}{3}$

NV
2 tháng 1

Đặt \(P=\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}=\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\left(a+b+c\right)^4\) (do \(a+b+c=1\))

\(P=\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\left(a+b+c\right)^4\ge3\sqrt[3]{\dfrac{1}{a^4.b^4.c^4}}.\left(3\sqrt[3]{abc}\right)^4=3^5=243\)

\(P_{min}=243\) khi \(a=b=c=\dfrac{1}{3}\)

11 tháng 11 2018

giỏi thì làm bài nÀY nèk

chứ mấy bác cứ đăng linh ta linh tinh lên online math

11 tháng 11 2018

Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ

đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh

DD
22 tháng 2 2022

\(P=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{\left(1+1+2\right)^2}{a+b+c}=4\)

Suy ra \(minP=4\).

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}=\frac{2}{c}\\a+b+c=4\\a,b,c>0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=1\\c=2\end{cases}}\).

30 tháng 6 2020

Theo đánh giá bởi Bunhiacopski ta dễ có:

\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+a+a}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng lại ta được:

\(T\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)

Ta đi chứng minh:

\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge a^4+b^4+c^4+2a+2b+2c\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge a+b+c\)

Mà \(LHS\ge abc\left(a+b+c\right)=a+b+c\Rightarrow T\le1\)

Đẳng thức xảy ra tại a=b=c=1

23 tháng 1 2017

i don't no TT

mình chưa học tới