K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Không mất tính tổng quát giả sử \(a=m\text{ax}\left\{a,b,c\right\}\Rightarrow a\ge\frac{1}{3}\)

BĐT tương đương với: \(a^3+\left(b+c\right)^3-3\left(b+c\right)bc+6abc\ge\frac{1}{4}\)

\(\Leftrightarrow a^3+\left(1-a\right)^3-3\left(1-a\right)bc+6abc-\frac{1}{4}\ge0\)

\(\Leftrightarrow4\left(3a-1\right)bc+\left(2a-1\right)^2\ge0\)

BĐT cuối cùng. đẳng thức xảy ra khi \(a=b=c=\frac{1}{2},c=0\)hoặc các hoán vị

Vậy ta chỉ cần chứng minh: \(f\left(t\right)=\left(9a-4\right)t+\left(2a-1\right)^2\ge0,\forall t\in\text{ }\left[0;\left(\frac{1-a}{2}\right)^2\right]\)

Do f(t) là hàm nghịch biến nên \(f\left(t\right)\ge f\left[\left(\frac{1-a}{2}\right)^2\right]=\frac{1}{4}a\left(3a-1\right)^2\ge0\)

Ta có đpcm. Đẳng thức xảy ra khi và chỉ khi a=b=c=1/3

easy

\(VT\ge\frac{8}{\left(a+b\right)^2+\left(a+b\right)^2c}+\frac{8}{\left(b+c\right)^2+\left(b+c\right)^2c}+\frac{8}{\left(c+a\right)^2+\left(c+a\right)^2b}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

\(=\frac{8}{\left(a+b\right)^2\left(c+1\right)}+\frac{8}{\left(b+c\right)^2\left(a+1\right)}+\frac{8}{\left(c+a\right)^2\left(b+1\right)}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

đến đây ghép rồi dùng cô si

bài này trong đề thi của tỉnh nào đó ở nước nào đó ở hành tinh nào đó năm 2016-2017

13 tháng 4 2019

bạn làm luôn khúc sau dùm mik nhé, mik ko hiểu

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)

30 tháng 7 2018

Xét hiệu \(VP-VT=\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)-\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\right)\)

\(=\frac{3a^3b^2+5a^3c^2+3a^2b^3-9a^2b^2c-7a^2bc^2+5a^2c^3+3ab^3c-8ab^2c^2-3abc^3+4b^3c^2+4b^2c^3}{4abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Dễ thấy: \(a;b;c>0\) nên cần chứng minh 

\(3a^3b^2+5a^3c^2+3a^2b^3-9a^2b^2c-7a^2bc^2+5a^2c^3+3ab^3c-8ab^2c^2-3abc^3+4b^3c^2+4b^2c^3\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(8a^3+5a^2b+3a^2c-4ab^2-4ac^2-b^3+3b^2c+5bc^2+c^3\right)\left(b-c\right)^2+\frac{1}{2}\left(3a^2c-2a^3-5a^2b+4ab^2+4ac^2+7b^3+3b^2c-5bc^2-c^3\right)\left(c-a\right)^2+\frac{1}{2}\left(2a^3+5a^2b-3a^2c+4ab^2+4ac^2+b^3-3b^2c+5bc^2+9c^3\right)\left(a-b\right)^2\ge0\)

31 tháng 7 2018

Tớ ko hiểu lắm

AH
Akai Haruma
Giáo viên
17 tháng 11 2019

Lời giải:

Sửa đề: \(\frac{1}{(a+b+\sqrt{2(a+c)})^3}+\frac{1}{(b+c+\sqrt{2(b+a)})^3}+\frac{1}{(c+a+\sqrt{2(b+c)})^3}\leq \frac{8}{9}\)

--------------------------

Áp dụng BĐT AM-GM:

\(a+b+\sqrt{2(a+c)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\geq 3\sqrt[3]{\frac{(a+b)(a+c)}{2}}\)

\(\Rightarrow [a+b+\sqrt{2(a+c)}]^3\geq \frac{27}{2}(a+b)(a+c)\)

\(\Rightarrow \frac{1}{(a+b+\sqrt{2(a+c)})^3}\leq \frac{2}{27(a+b)(a+c)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\leq \frac{4(a+b+c)}{27(a+b)(b+c)(c+a)}(1)\)

Lại theo BĐT AM-GM:

\((a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ac)-abc\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}=\frac{8}{9}(a+b+c)(ab+bc+ac)(2)\)

Và:

\(16(a+b+c)\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\geq \frac{3(a+b+c)}{ab+bc+ac}\)

\(\Rightarrow ab+bc+ac\geq \frac{3}{16}(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\leq \frac{1}{6(ab+bc+ac)}\leq \frac{1}{6.\frac{3}{16}}=\frac{8}{9}\) (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 11 2019

Dấu "=" xảy ra khi $a=b=c=\frac{1}{4}$

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

8 tháng 8 2017

bài này mà giải theo SOS là hơi bị tuyệt vời nhé =)))

8 tháng 8 2017

em moi co lop 7

16 tháng 7 2017

Bạn xem lời giải ở đây nhé https://olm.vn/hoi-dap/question/960694.html

16 tháng 7 2017

Another way CLICK HERE