K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

Sửa lại đề bài:  1 / 2a- b 

                   ( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)

mới lm đc nhé bn! 

a) ĐKXĐ: bn tự lm nhé ! 

bn biến đổi: 2a3-b+2a-a2b =  (2a-b)  + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1) 

rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0

29 tháng 12 2017

Bạn nào giúp tớ với!

25 tháng 11 2023

Với \(a,b\in\mathbb{Z};a,b\ne0;a\ne3b;a\ne-5b\), ta có:

\(E=\dfrac{b\left(2a^2+10ab+a+5b\right)}{a-3b}:\dfrac{a^2b+5ab^2}{a^2-3ab}\)

\(=\dfrac{b\left[2a\left(a+5b\right)+\left(a+5b\right)\right]}{a-3b}:\dfrac{ab\left(a+5b\right)}{a\left(a-3b\right)}\)

\(=\dfrac{b\left(2a+1\right)\left(a+5b\right)}{a-3b}:\dfrac{b\left(a+5b\right)}{a-3b}\)

\(=\dfrac{b\left(2a+1\right)\left(a+5b\right)}{a-3b}\cdot\dfrac{a-3b}{b\left(a+5b\right)}\)

\(=2a+1\)

Vì \(2a+1\) là số nguyên lẻ với mọi a nguyên

nên \(E\) là số nguyên lẻ.

\(\text{#}Toru\)

NV
6 tháng 1 2022

\(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}+\dfrac{a+2b}{27}+\dfrac{b+2c}{27}\ge3\sqrt[3]{\dfrac{a^3\left(a+2b\right)\left(b+2c\right)}{27^2.\left(a+2b\right)\left(b+2c\right)}}=\dfrac{a}{3}\)

Tương tự:

\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}+\dfrac{b+2c}{27}+\dfrac{c+2a}{27}\ge\dfrac{b}{3}\)

\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}+\dfrac{c+2a}{27}+\dfrac{a+2b}{27}\ge\dfrac{c}{3}\)

Cộng vế:

\(VT+\dfrac{2\left(a+b+c\right)}{9}\ge\dfrac{a+b+c}{3}\)

\(\Rightarrow VT\ge\dfrac{a+b+c}{9}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

22 tháng 6 2019

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-5ab+b^2=0\)

\(\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

Làm nốt

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(B=\frac{1}{(a+2b)(a+2c)}+\frac{1}{(b+2a)(b+2c)}+\frac{1}{(c+2a)(c+2b)}\)

\(\geq \frac{9}{(a+2b)(a+2c)+(b+2a)(b+2c)+(c+2a)(c+2b)}\)

\(\Leftrightarrow B\geq \frac{9}{(a^2+2ac+2ab+4bc)+(b^2+2bc+2ab+4ac)+(c^2+2bc+2ac+4ab)}\)

\(\Leftrightarrow B\geq \frac{9}{a^2+b^2+c^2+8(ab+bc+ac)}=\frac{9}{(a+b+c)^2+6(ab+bc+ac)}(*)\)

Theo hệ quả quen thuộc của BĐT Cô-si:

\(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\)

\(\Rightarrow 2(a+b+c)^2\geq 6(ab+bc+ac)(**)\)

Từ \((*); (**)\Rightarrow B\geq \frac{9}{(a+b+c)^2+2(a+b+c)^2}=\frac{3}{(a+b+c)^2}\geq \frac{3}{3^2}=\frac{1}{3}\)

(do \(a+b+c\leq 3)\)

Do đó: \(B_{\min}=\frac{1}{3}\)

Dấu bằng xảy ra khi \(a=b=c=1\)