K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCKA vuông tại K có KI là đường cao ứng với cạnh huyền AC

nên \(CI\cdot CA=CK^2\left(1\right)\)

Xét ΔCKB vuông tại K có KH là đường cao ứng với cạnh huyền BC

nên \(CH\cdot CB=CK^2\left(2\right)\)

Từ (1) và (2) suy ra \(CI\cdot CA=CH\cdot CB\)

8 tháng 7 2017

a, áp dụng hệ thức lượng ta có CB.CH=CK^2 

                                            VÀ CA.CI=CK^2

TỪ đó suy ra đpcm cùng = quá CK ^2

b , DỄ DÀNG CM đc tứ giác IKCH là hcn suy ra IK=CH  ; KH=IC  áp dụng hệ thức lượng cuối cùng trong tam giác vg IKH  Có \(\frac{1}{KM^2}=\frac{1}{IK^2}+\frac{1}{KH^2}\)<=> \(\frac{1}{KM^2}=\frac{1}{CH^2}+\frac{1}{CI^2}\)

11 tháng 7 2017

Cảm ơn bạn lê thị bích ngọc đã giúp đỡ mình Nhưng còn ý d) bạn chưa làm. Đây là câu trả lời cho ý d) của mình nhé ^-^

d) Áp dụng hệ thức lượng vào \(\Delta ABC\) vuông tại C ta có :  \(AC^2=AK.AB\)

                                                                                          \(CB^2=BK.AB\)

\(\Rightarrow\frac{AC^2}{BC^2}=\frac{AK.AB}{BK.AB}=\frac{AK}{BK}\)

\(\Rightarrow\frac{AC^4}{BC4}=\frac{AK^2}{BK^2}\) (1)

Mặt khác , áp dụng hệ thức lượng vào \(\Delta AKC\)  vuông tại K  ta có: \(AK^2=AI.AC\) (2)

                                                   vào \(\Delta BKC\)  vuông tại K  ta có  \(KB^2=BH.BC\)  (3)

Từ (1) (2) (3) \(\Rightarrow\frac{AC^4}{BC^4}=\frac{AI.AC}{BH.BC}\Rightarrow\frac{AC^3}{CB^3}=\frac{AI}{BH}\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Bài 1:

a)

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2-AC^2}=\sqrt{10^2-8^2}=6\) (cm)

\(S_{ABC}=\frac{AC.CB}{2}=\frac{AB.CK}{2}\Rightarrow CK=\frac{AC.CB}{AB}=\frac{8.6}{10}=4,8\) (cm)

Áp dụng định lý Pitago:

\(BK=\sqrt{CB^2-CK^2}=\sqrt{6^2-4,8^2}=3,6\) (cm)

\(AK=BA-BK=10-3,6=6,4\) (cm)

b)

\(KH\perp BC, KI\perp AC\Rightarrow \widehat{KHC}=\widehat{KIC}=90^0=\widehat{HCI}\)

Tứ giác $KHCI$ có 3 góc vuông nên là hình chữ nhật.

c)

Xét tam giác $CHK$ và $CKB$ có:

Góc $C$ chung

\(\widehat{CHK}=\widehat{CKB}=90^0\)

\(\Rightarrow \triangle CHK\sim \triangle CKB(g.g)\)

\(\Rightarrow \frac{CH}{CK}=\frac{CK}{CB}\Rightarrow CH.CB=CK^2(1)\)

Hoàn toàn tương tự: \(\triangle CKI\sim \triangle CAK(g.g)\)

\(\Rightarrow \frac{CK}{CA}=\frac{CI}{CK}\Rightarrow CA.CI=CK^2(2)\)

Từ \((1);(2)\Rightarrow CH.CB=CA.CI\) (đpcm)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Bài 1:

d)

\(HK\parallel AC\Rightarrow \frac{BH}{BK}=\frac{BC}{BA}\Rightarrow BH=\frac{BK.BC}{AB}\) (định lý Ta-let)

Tương tự: \(\frac{AI}{AK}=\frac{AC}{AB}\Rightarrow AI=\frac{AK.AC}{AB}\)

\(\Rightarrow \frac{AI}{BH}=\frac{AK}{BK}.\frac{AC}{BC}\)

Xét tam giác $BKC$ và $BCA$ có:

\(\left\{\begin{matrix} \text{góc B chung}\\ \widehat{BKC}=\widehat{BCA}=90^0\end{matrix}\right.\Rightarrow \triangle BKC\sim \triangle BCA(g.g)\)

\(\Rightarrow \frac{BK}{BC}=\frac{BC}{BA}\Rightarrow BK=\frac{BC^2}{BA}\) (cái này là công thức hệ thức lượng quen thuộc, mình chỉ chứng minh lại thôi nhé)

Tương tự: \(AK=\frac{AC^2}{AB}\)

\(\Rightarrow \frac{AK}{BK}=\frac{AC^2}{BC^2}(4)\)

Từ \((3);(4)\Rightarrow \frac{AI}{BH}=\frac{AC^2}{BC^2}.\frac{AC}{BC}=\left(\frac{AC}{BC}\right)^3\) (đpcm)

e)

Áp dụng những công thức thu từ phần d:

\(AB.BH.AI=AB.\frac{BK.BC}{BA}.\frac{AK.AC}{AB}=\frac{AK.BK.BC.AC}{AB}\)

\(AK=\frac{AC^2}{AB}; BK=\frac{BC^2}{AB}\Rightarrow AB.BH.AI=\left(\frac{AC.BC}{AB}\right)^3\)

\(=\left(\frac{2S_{ABC}}{AB}\right)^3=CK^3\) (đpcm)

f)

Ta có: \(S_{KHI}=\frac{KH.KI}{2}=\frac{KM.HI}{2}\)

\(\Rightarrow KM=\frac{KH.KI}{HI}\Rightarrow KM^2=\frac{KH^2.KI^2}{HI^2}\)

\(\Rightarrow \frac{1}{KM^2}=\frac{HI^2}{KH^2.KI^2}=\frac{KH^2+KI^2}{KH^2.KI^2}=\frac{1}{KI^2}+\frac{1}{KH^2}\) (Pitago)

Mà theo phần b ta cm được $KHCI$ là hcn nên \(KI=CH; KH=CI\)

\(\Rightarrow \frac{1}{KM^2}=\frac{1}{CH^2}+\frac{1}{CI^2}\) (đpcm)

a: ΔBCA vuông tại C

=>BC^2+CA^2=BA^2

=>BC^2=10^2-8^2=36

=>BC=6cm

Xét ΔBAC vuông tại C có CK là đường cao

nên CK*AB=CA*CB; AK*AB=AC^2; BK*BA=BC^2

=>CK=4,8cm; AK=8^2/10=6,4cm; BK=6^2/10=3,6cm

b: Xét tứ giác CHKI có

góc CHK=góc CIK=góc HCI=90 độ

=>CHKI là hình chữ nhật

c: ΔCKA vuông tại K có KI là đường cao

nên CI*CA=CK^2

ΔCKB vuông tại K có KH là đường cao

nên CH*CB=CK^2

=>CI*CA+CH*CB=2*CK^2

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông đối với tam giác vuông $AHB$, đường cao $HE$:

$EA.EB=HE^2$
Tương tự: $FA.FC=HF^2$

$\Rightarrow EA.EB+FA.FC=HE^2+HF^2=EF^2(1)$ (định lý Pitago)

Mặt khác: Dễ thấy $HEAF$ là hình chữ nhật do có 3 góc $\widehat{E}=\widehat{A}=\widehat{F}=90^0$

$\Rightarrow EF=HA$

$\Rightarrow EF^2=HA^2(2)$
Áp dụng hệ thức lượng trong tam giác vuông $ABC$:

$AH^2=HB.HC(3)$

Từ $(1);(2); (3)\Rightarrow EA.EB+FA.FC=HB.HC$ (đpcm)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Hình vẽ:

6 tháng 7 2021

a) Ta có: \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật

\(\Delta AHB\) vuông tại H có HE là đường cao \(\Rightarrow AE.AB=AH^2\)

\(\Delta AHC\) vuông tại H có HF là đường cao \(\Rightarrow AF.AC=AH^2\)

\(\Rightarrow AE.AB=AF.AC\)

b) \(\Delta ABC\) vuông tại A có đường cao AH \(\Rightarrow\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)

\(\Rightarrow AB^2-AC^2=BH.BC-CH.BC=BC\left(BH-CH\right)\)

\(=\left(BH+CH\right)\left(BH-CH\right)=BH^2-CH^2\)

c) Ta có: \(\dfrac{1}{HF^2}-\dfrac{1}{CH^2}=\dfrac{1}{AF.FC}-\dfrac{1}{CA.CF}=\dfrac{1}{CF}\left(\dfrac{1}{AF}-\dfrac{1}{CA}\right)\)

\(=\dfrac{1}{CF}.\dfrac{CF}{AF.AC}=\dfrac{1}{AH^2}\)

Lại có: \(\dfrac{1}{HE^2}-\dfrac{1}{BH^2}=\dfrac{1}{BE.EA}-\dfrac{1}{BE.BA}=\dfrac{1}{BE}\left(\dfrac{1}{EA}-\dfrac{1}{BA}\right)\)

\(=\dfrac{1}{BE}.\dfrac{BE}{EA.BA}=\dfrac{1}{AH^2}\)

\(\Rightarrow\dfrac{1}{HF^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{BH^2}\Rightarrow\dfrac{1}{BH^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{HF^2}\)

d) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)

\(=BE.BA.CF.CA=BE.CF.\left(AB.AC\right)=BE.CF.AH.BC\)

\(\Rightarrow BC.BE.CF=AH^3\)

e) Ta có: \(AE.BE+AF.CF=EH^2+HF^2=EF^2=AH^2=BH.CH\)

f) Ta có: \(3AH^2+BE^2+CF^2=3AH^2+BH^2-EH^2+CH^2-HF^2\)

\(=3AH^2+BH^2+CH^2-\left(EH^2+HF^2\right)\)

\(=3AH^2+BH^2+CH^2-EF^2=3AH^2+BH^2+CH^2-AH^2\)

\(=BH^2+CH^2+2AH^2=BH^2+CH^2+2BH.CH\)

\(=\left(BH+CH\right)^2=BC^2\)

7 tháng 6 2021

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)

24 tháng 10 2021

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=5(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=2,4(cm)