K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 2 2022

Chắc x;y phải nguyên chứ? Bất kì thì có vô số cặp thỏa mãn

19 tháng 2 2022

à đr e viết thiếu ạ :v

12 tháng 11 2021

\(\left(\sqrt{x-1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+3-x\right)=4\\ \Leftrightarrow\sqrt{x-1}+\sqrt{3-x}\le2\\ y^2+2\sqrt{2020}y+2022=\left(y^2+2y\sqrt{2020}+2020\right)+2\\ =\left(y+\sqrt{2020}\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=3-x\\y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\sqrt{2020}\end{matrix}\right.\)

Vậy ...

12 tháng 11 2021

ĐKXĐ: \(3\ge x\ge1\)

Áp dụng BĐT Bunhiacopski:

\(1\sqrt{x-1}+1\sqrt{3-x}\le\sqrt{\left(1^2+1^2\right)\left(x-1+3-x\right)}=\sqrt{2.2}=2\)

Mặt khác: \(y^2+2\sqrt{2020}y+2022=\left(y+\sqrt{2020}\right)^2+2\ge2\)

Nên để thõa mãn yêu cầu bài toán thì

\(\left\{{}\begin{matrix}\sqrt{x-1}=\sqrt{3-x}\\y+\sqrt{2020}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\y=-\sqrt{2020}\end{matrix}\right.\)

7 tháng 10 2017

áp dụng bdt amgm ta có

\(\sqrt{x}+\frac{1}{\sqrt{x}}\)+\(4\sqrt{y}+\frac{1}{\sqrt{y}}\) \(\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}+2\sqrt{4\sqrt{y}.\frac{1}{\sqrt{y}}}\) =6

dau = xay ra khi \(\hept{\begin{cases}\sqrt{x}=\frac{1}{\sqrt{x}}\\4\sqrt{y}=\frac{1}{\sqrt{y}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)

kl (x;y ) =(1;1/4)

7 tháng 10 2017

ĐKXĐ: \(x;y>0\)

\(\sqrt{x}+4\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)

Á dụng bđt Cauchy ta có :

 \(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\)

\(4\sqrt{y}+\frac{1}{\sqrt{y}}\ge2\sqrt{4\sqrt{y}.\frac{1}{\sqrt{y}}}=4\)

\(\Rightarrow\sqrt{x}+4\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge6\) Hay \(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=\frac{1}{\sqrt{x}}\\4\sqrt{y}=\frac{1}{\sqrt{y}}\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:

Ta có:\(y^2+2\sqrt{2020}y+2022=(y^2+2\sqrt{2020}y+2020)+2=(y+\sqrt{2020})^2+2\geq 2(1)\)

Áp dụng BĐT Bunhiacopxky:

$(\sqrt{x-1}+\sqrt{3-x})^2\leq (x-1+3-x)(1+1)=4$

$\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2(2)$

Từ $(1); (2)\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2\leq y^2+2\sqrt{2020}y+2022$

Dấu "=" xảy ra khi mà: \(\left\{\begin{matrix} \frac{x-1}{1}=\frac{3-x}{1}\\ y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2\\ y=-\sqrt{2020}\end{matrix}\right.\)

20 tháng 12 2018

Đặt VT bằng A
\(A^2=x-3+2\sqrt{\left(x-3\right)\left(5-x\right)}+5-x\)
\(A^2=2+2\sqrt{\left(x-3\right)\left(5-x\right)}\le2+\left(x-3\right)+\left(5-x\right)\)
\(A^2\le4\Leftrightarrow A\le2\)
Đặt VP=B
\(B=y^2+2.\sqrt{2013}.y+2013+2\)
\(B=\left(y+\sqrt{2013}\right)^2+2\ge2\)
mà A=B=2
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=5-x\\\left(y+\sqrt{2013}\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-\sqrt{2013}\end{matrix}\right.\)
\(\)

21 tháng 12 2018

ko có đkxđ hả

20 tháng 3 2020

ĐK: \(3\le x\le5\)

\(\begin{align} & VT=\left( \sqrt{x-3}+\sqrt{5-x} \right)\le 2\left( x-3+5-x \right) \\ & \Leftrightarrow {{\left( \sqrt{x-3}+\sqrt{5-x} \right)}^{2}}\le 4 \\ & \Rightarrow \sqrt{x-3}+\sqrt{5-x}\le 2 \\ & VP={{\left( y+\sqrt{2013} \right)}^{2}}+2\ge 2 \\ \end{align}\)

Vậy phương trình chỉ tồn tại khi $VT=VP=2$

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x-3}+\sqrt{5-x}\right)^2=2^2\\\left(y+\sqrt{2013}\right)^2+2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\sqrt{2013}\end{matrix}\right.\)

7 tháng 9 2017

\(\sqrt{2000}\)=\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(\Rightarrow2000=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)

                  =\(x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

                 \(\Rightarrow x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2000-1=1999\)

ma \(S^2=x^2\left(1+y^2\right)+y^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

           =\(x^2+x^2y^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

          =\(x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) =\(1999\Rightarrow S=\sqrt{1999}\)