K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 7 2023

Lời giải:

Đặt $a^2+a+1=k$ thì:

$A=k(k+1)-12=k^2+k-12=(k-3)(k+4)=(a^2+a-2)(a^2+a+5)$

Với $a>1$, tức là $a\geq 2$ thì $a^2+a-2>2, a^2+a+5>2$ nên $A$ là hợp số (đpcm)

25 tháng 7 2023

Đề bài cm: A = (a2 +a +1)(a2 + a + 2) -12 là hợp số với (a \(\in\) N; a > 1)

                                    Giải: 

Vì a > 1; a \(\in\) N ⇒ a ≥ 2;  ⇒ A ≥ (22 + 2 + 1)( 22 + 2 + 2) - 12 = 44

Ta có: a2 + a + 2 - (a2 + a + 1) = 1 vậy

B = (a2+a 1)(a2 + a + 2) là tích của hai số tự nhiên liên tiếp nên B ⋮ 2

A = B - 12 ⋮ 2 ⇒ A ⋮ 1; 2; A ( A >2)  ⇒ A là hợp số Đpcm 

 

 

 

AH
Akai Haruma
Giáo viên
12 tháng 1 2022

Lời giải:
Nếu $a,b,c$ lập thành csc thì $b=a+m, c=a+2m$ với $m$ là công sai.

Khi đó:

$3(a^2+b^2+c^2)-6(a-b)^2=3[a^2+(a+m)^2+(a+2m)^2]-6(a-a-m)^2$

$=3(a^2+a^2+m^2+2am+a^2+4m^2+4am)-6m^2$

$=3(3a^2+5m^2+6am)=9a^2+15m^2+18am-6m^2$

$=9a^2+9m^2+18am$

$=9(a^2+m^2+2am)=9(a+m)^2=(3a+3m)^2$

$=(a+a+m+a+2m)^2=(a+b+c)^2$ (đpcm).

22 tháng 12 2018

a) Xét 4 trường hợp :

TH1: a lẻ - b chẵn

=> ab(a+b) chẵn

=> ab(a+b) chia hết cho 2

TH2: a chẵn - b lẻ

=> ab(a+b) chẵn

=> ab(a+b) chia hết cho 2

TH3: a chẵn - b chẵn

=> ab(a+b) chẵn

=> ab(a+b) chia hết cho 2

TH4: a lẻ - b lẻ

=> a + b chẵn

=> ab(a+b) chẵn

=> ab(a+b) chia hết cho 2

Vậy ta có đpcm

22 tháng 12 2018

b) \(ab-ba=10a+b-10b-a\)

\(=9a-9b=9\left(a-b\right)⋮9\left(đpcm\right)\)

3 tháng 10 2021

Giả sử \(\hept{\begin{cases}a⋮p\\b⋮̸p\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮p\\b^2⋮̸p\end{cases}}\)

=> \(\hept{\begin{cases}a^2:p\text{ dư }4k;4k+1;4k+2\\b^2:p\text{ dư }4k;4k+1;4k+2\end{cases}}\)

Chọn ngẫu nhiên các cặp a2 ; b2 bất kì nhận thấy 

 a2 + b2 \(⋮̸\)p (trái với giả thiết) 

=> Điều giả sử là sai => đpcm 

27 tháng 4 2019

Từ \(1=a+b+c\Rightarrow1=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right).\)(bất đẳng thức bunhiacopxki)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}\)(*)

Ta có  : \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)(1)

Dễ thấy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{b}{b}+\frac{c}{a}+\frac{a}{c}\)

\(\ge3+2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{c}{b}\frac{b}{c}}+2\sqrt{\frac{a}{c}\frac{c}{a}}=3+2+2+2=9\)(bất đẳng thức cô si)

\(Hay:\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\left(do:a+b+c=1\right)\)(2)

Từ (1) và (2) suy ra \(9^2\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Rightarrow\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge27\)(**)

Ta có \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)

\(=a^2+2+\frac{1}{a^2}+b^2+2+\frac{1}{b^2}+c^2+2+\frac{1}{c^2}\)

\(=\left(a^2+b^2+c^2\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+6\)

\(\ge\frac{1}{3}+27+6=33+\frac{1}{3}>33\)(theo (*) và (**) )

NV
20 tháng 4 2019

Đặt \(a^2+a+1=n\left(n\ge7\right)\)

\(A=n\left(n+1\right)-12=n^2+n-12=\left(n+4\right)\left(n-3\right)\)

Do \(n\ge7\Rightarrow\left\{{}\begin{matrix}n+4>1\\n-3>1\end{matrix}\right.\)

\(\Rightarrow A\) là tích của 2 số tự nhiên lớn hơn 1 nên A là hợp số

Để chứng minh rằng tích ab chia hết cho 6, ta cần chứng minh rằng một trong hai số a hoặc b chia hết cho 2 và một trong hai số a hoặc b chia hết cho 3.

Giả sử a chia hết cho 2, khi đó a có thể là 2, 4, 6 hoặc 8. Ta sẽ xét từng trường hợp:

  1. Nếu a = 2, thì n = 10a + b = 20 + b. Vì n > 3, nên b > 0. Khi đó, tích ab = 2b chia hết cho 2.

  2. Nếu a = 4, thì n = 10a + b = 40 + b. Vì n > 3, nên b > -37. Khi đó, tích ab = 4b chia hết cho 2.

  3. Nếu a = 6, thì n = 10a + b = 60 + b. Vì n > 3, nên b > -57. Khi đó, tích ab = 6b chia hết cho 2.

  4. Nếu a = 8, thì n = 10a + b = 80 + b. Vì n > 3, nên b > -77. Khi đó, tích ab = 8b chia hết cho 2.

Ta đã chứng minh được rằng nếu a chia hết cho 2, thì tích ab chia hết cho 2.

Tiếp theo, ta chứng minh rằng một trong hai số a hoặc b chia hết cho 3. Ta có thể sử dụng phương pháp tương tự như trên để chứng minh điều này.

Vì tích ab chia hết cho cả 2 và 3, nên tích ab chia hết cho 6.

Vậy, ta đã chứng minh được rằng nếu n = 10a + b (a, b  N, 0 < a < 10), thì tích ab chia hết cho 6.

10 tháng 12 2023

Rảnh à?

 

2 tháng 8 2023

 Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.

3 tháng 8 2023

a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;

\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố ) 

Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)

mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ

\(\Leftrightarrow a_1;a_2;..a_m\) chẵn

\(\Leftrightarrow n\) là số chính phương 

=> n luôn có dạng \(n=l^2\) 

Mặt khác  \(x_1;x_2;..x_m\) là số nguyên tố 

Nếu  \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ

<=> r = 0 nên n = 2r.l2 đúng (1) 

Nếu  \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\) 

TH1 :  \(a_k\) \(⋮2\) 

\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)

=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2) 

TH2 : ak lẻ

Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\)  nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết) 

Nếu  \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)

Từ (1);(2);(3) => ĐPCM 

\(D=\sqrt{\left(a^2+6a\right)\left(a^2+6a+5\right)\left(a^2+6a+8\right)+36}\)

Đặt a^2+6a=x

=>\(D=\sqrt{x\left(x+5\right)\left(x+8\right)+36}\)

\(=\sqrt{x\left(x^2+13x+40\right)+36}\)

\(=\sqrt{x^3+13x^2+40x+36}\)

=>\(D=\sqrt{x^3+9x^2+4x^2+36x+4x+36}\)

\(=\sqrt{\left(x+9\right)\left(x^2+4x+4\right)}\)

\(=\sqrt{\left(a^2+6a+9\right)\left(x+2\right)^2}\)

=|a+3|*|x+2| là số nguyên