K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có \(f\left( x \right),g\left( x \right)\) là các hàm đa thức nên các hàm số \(f\left( x \right),g\left( x \right)\) liên tục trên \(\mathbb{R}\)

Vậy các hàm số \(f\left( x \right),g\left( x \right)\) liên tục tại \(x = 2\)

b) \(\begin{array}{l}f\left( x \right) + g\left( x \right) = {x^3} + {x^2} + x + 1\\f\left( x \right) - g\left( x \right) = {x^3} - {x^2} + x - 1\\f\left( x \right).g\left( x \right) = \left( {{x^3} + x} \right)\left( {{x^2} + 1} \right) = {x^5} + 2{x^3} + x\\\frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{{x^3} + x}}{{{x^2} + 1}} = \frac{{x\left( {{x^2} + 1} \right)}}{{{x^2} + 1}} = x\end{array}\)

Ta có \(f\left( x \right) + g\left( x \right);f\left( x \right) - g\left( x \right);f\left( x \right).g\left( x \right);\frac{{f\left( x \right)}}{{g\left( x \right)}}\) là các hàm đa thức nên các hàm số \(f\left( x \right),g\left( x \right)\) liên tục trên \(\mathbb{R}\)

Vậy các hàm số \(f\left( x \right) + g\left( x \right);f\left( x \right) - g\left( x \right);f\left( x \right).g\left( x \right);\frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại \(x = 2\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Đặt \(h\left( x \right) = f\left( x \right) + g\left( x \right) = \frac{1}{{x - 1}} + \sqrt {4 - x} \). Ta có:

\(\begin{array}{l}h\left( 2 \right) = \frac{1}{{2 - 1}} + \sqrt {4 - 2}  = 1 + \sqrt 2 \\\mathop {\lim }\limits_{x \to 2} h\left( x \right) = \mathop {\lim }\limits_{x \to x} \left( {\frac{1}{{x - 1}} + \sqrt {4 - x} } \right) = \frac{1}{{2 - 1}} + \sqrt {4 - 2}  = 1 + \sqrt 2 \end{array}\)

Vì \(\mathop {\lim }\limits_{x \to 2} h\left( x \right) = h\left( 2 \right)\) nên hàm số \(y = f\left( x \right) + g\left( x \right)\) liên tục tại \(x = 2\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).

Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).

• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)

ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1}  = \sqrt {1 - 1}  = 0 = g\left( 1 \right)\)

Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).

Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Theo em ý kiến của bạn Nam là đúng.

Ta có: Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Hàm số \(y = g\left( x \right)\) không liên tục tại \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne g\left( {{x_0}} \right)\)

Do đó \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) + \mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne f\left( {{x_0}} \right) + g\left( {{x_0}} \right)\)

Vì vậy hàm số không liên tục tại x0.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có \(f\left( {{x_0}} \right) = {x_0} + 1;\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to {x_0}} x + 1 = {x_0} + 1\)

\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Vậy hàm số \(f\left( x \right)\) liên tục tại \({x_0}.\)

b) Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số là một đường thẳng liền mạch với mọi giá trị \(x \in \mathbb{R}.\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)

Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).

NV
21 tháng 4 2022

\(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2g\left(x\right)+36x=0\) (1)

Thay \(x=0\Rightarrow f^3\left(2\right)-2f^2\left(2\right)=0\Rightarrow\left[{}\begin{matrix}f\left(2\right)=0\\f\left(2\right)=2\end{matrix}\right.\)

Đạo hàm 2 vế của (1):

\(\Rightarrow-3f^2\left(2-x\right).f'\left(2-x\right)-12f\left(2+3x\right).f'\left(2+3x\right)+2x.g\left(x\right)+x^2.g'\left(x\right)+36=0\)

Thay \(x=0\)

\(\Rightarrow-3f^2\left(2\right).f'\left(2\right)-12f\left(2\right).f'\left(2\right)+36=0\)

TH1: \(f\left(2\right)=0\Rightarrow36=0\) (ktm)

TH2: \(f\left(2\right)=2\)

\(\Rightarrow-3.2^2.f'\left(2\right)-12.2.f'\left(2\right)+36=0\Rightarrow f'\left(2\right)=1\)

\(\Rightarrow A=3.2+4.1=10\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

Ta có: 

\(f'\left(x\right)=6x^2-2x\\ g'\left(x\right)=3x^2+x\)

Theo đề bài, ta có: 

\(f'\left(x\right)>g'\left(x\right)\\ \Leftrightarrow6x^2-2x>3x^2+x\\ \Leftrightarrow3x^2-3x>0\\ \Leftrightarrow3x\left(x-1\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là \(\left(-\infty;0\right)\cup\left(1;+\infty\right)\)

Chọn D.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số đã cho là: \({D_f} = \mathbb{R};\;{D_g} = \mathbb{R}\)

b) Ta có: \(f\left( { - x} \right) = {\left( { - x} \right)^2} = {x^2} = f\left( x \right)\)

Đồ thị của hàm số \(y = f\left( x \right) = {x^2}\) đối xứng qua trục tung

c) Ta có: \(g\left( { - x} \right) = {\left( { - x} \right)^3} =  - {x^3} =  - g\left( x \right)\)

Đồ thị của hàm số \(y = g\left( x \right) = {x^3}\) đối xứng qua gốc tọa độ

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) ĐKXĐ: \({x^2} - 4 \ne 0 \Leftrightarrow x \ne  \pm 2\)

Vậy hàm số có TXĐ: \(D = \mathbb{R}\backslash \left\{ { \pm 2} \right\}\).

Hàm số \(f\left( x \right) = \frac{x}{{{x^2} - 4}}\) là hàm phân thức hữu tỉ nên nó liên tục trên các khoảng \(\left( { - \infty ; - 2} \right),\left( { - 2;2} \right)\) và \(\left( {2; + \infty } \right)\).

b) ĐKXĐ: \(9 - {x^2} \ge 0 \Leftrightarrow  - 3 \le x \le 3\)

Vậy hàm số có TXĐ: \(D = \left[ { - 3;3} \right]\).

Hàm số \(g\left( x \right) = \sqrt {9 - {x^2}} \) là hàm căn thức nên nó liên tục trên khoảng \(\left( { - 3;3} \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \sqrt {9 - {x^2}}  = \sqrt {9 - {3^2}}  = 0 = f\left( 3 \right)\)

\(\mathop {\lim }\limits_{x \to  - {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {3^ + }} \sqrt {9 - {x^2}}  = \sqrt {9 - {{\left( { - 3} \right)}^2}}  = 0 = f\left( { - 3} \right)\)

Vậy hàm số \(g\left( x \right) = \sqrt {9 - {x^2}} \) là liên tục trên đoạn \(\left[ { - 3;3} \right]\).

c) ĐKXĐ: \(\sin x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)

Vậy hàm số có TXĐ: \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).

Hàm số \(h\left( x \right) = \cos x + \tan x\) là hàm lượng giác nên nó liên tục trên các khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right),k \in \mathbb{Z}\).