K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

Cách giải khác:

Ta chứng minh bổ đề:

\(\dfrac{11x+4y}{4x^2-xy+2y^2}\le\dfrac{2}{x}+\dfrac{1}{y}\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)(Đúng)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{11y+4z}{4y^2-yz+2z^2}\le\dfrac{2}{y}+\dfrac{1}{z};\dfrac{11z+4x}{4z^2-xz+2x^2}\le\dfrac{2}{z}+\dfrac{1}{x}\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}=\dfrac{3\left(xy+yz+xz\right)}{xyz}=9\)

Đẳng thức xảy ra khi \(x=y=z=1\)

16 tháng 4 2017

Câu hỏi của Neet - Toán lớp 10 | Học trực tuyến đổi biến (a,b,c)->(x,y,z) là y nhau

6 tháng 4 2017

Dự đoán dấu "=" xảy ra khi \(x=y=z=1\) ta tìm được \(P=9\)

Ta sẽ chứng minh nó là \(GTLN\) của \(P\)

Thật vậy, ta cần chứng minh 

\(Σ\frac{11x+4y}{4x^2-xy+2y^2}\le\frac{3\left(xy+yz+xz\right)}{xyz}\)

\(\Leftrightarrow\left(\frac{3}{x}-\frac{11x+4y}{4x^2-xy+2y^2}\right)\ge0\)

\(\LeftrightarrowΣ\frac{\left(x-y\right)\left(x-6y\right)}{x\left(4x^2-xy+2y^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\frac{\left(x-y\right)\left(x-6y\right)}{x\left(4x^2-xy+2y^2\right)}+\frac{1}{y}-\frac{1}{x}\right)\ge0\)

\(\LeftrightarrowΣ\frac{\left(x-y\right)^2\left(x+y\right)}{xy\left(4x^2-xy+2y^2\right)}\ge0\) (luôn đúng)

Vậy \(P_{Max}=9\) khi \(x=y=z=1\)

1 tháng 6 2020

ggvcgfdsx

30 tháng 4 2017

bai 2 quen quen

30 tháng 4 2017

à bài này làm r` ở bên đây nè :D có cả 2 cách

Câu hỏi của Phúc Long Nguyễn - Toán lớp 9 - Học toán với OnlineMath

2 tháng 12 2017

Ta chứng minh:

\(\frac{11x+4y}{4x^2-xy+2y^2}\le\frac{2}{x}+\frac{1}{y}\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)(đúng)

Áp dụng bài toán ta được:

\(P\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.3=9\)

NV
23 tháng 8 2021

Ta chứng minh BĐT sau:

Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)

\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)

Tương tự và cộng lại:

\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)

NV
18 tháng 5 2021

Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại

Với pt sau:

Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

Với \(x;y;z\ne0\)

Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3

Do đó:

\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)