K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2020

Mình sửa đề như thế này không biết có đúng không:

"Trong các cặp số thực (x;y) thỏa mãn: \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\).

Hãy tìm cặp số có tổng x+2y lớn nhất."

Xét \(x^2+y^2>1\): (*) Khi đó phải có: \(x^2-x+y^2-y\le0\Leftrightarrow x^2+y^2\le x+y\). Áp dụng bất đẳng thức AM - GM ta có: \(x^2+\frac{7+2\sqrt{10}}{20}=x^2+\left(\frac{5+\sqrt{10}}{10}\right)^2\ge x.\frac{5+\sqrt{10}}{5}\); \(y^2+\frac{13+4\sqrt{10}}{20}=y^2+\left(\frac{5+2\sqrt{10}}{10}\right)^2\ge y.\frac{5+2\sqrt{10}}{5}\). Do đó: \(x^2+y^2+\frac{10+3\sqrt{10}}{10}\ge x.\frac{5+\sqrt{10}}{5}+y.\frac{5+2\sqrt{10}}{5}\) \(\Rightarrow x+y+\frac{10+3\sqrt{10}}{10}\ge x.\frac{5+\sqrt{10}}{5}+y.\frac{5+2\sqrt{10}}{5}\Leftrightarrow\frac{\sqrt{10}}{5}x+\frac{2\sqrt{10}}{5}y\le\frac{10+3\sqrt{10}}{10}\Leftrightarrow x+2y\le\frac{3+\sqrt{10}}{2}\). Đẳng thức xảy ra khi và chỉ khi \(x=\frac{5+\sqrt{10}}{5};y=\frac{5+2\sqrt{10}}{5}\) (thỏa mãn (*)). +) Nếu \(x^2+y^2< 1\Rightarrow x,y< 1\Rightarrow x+2y< 3< \frac{3+\sqrt{10}}{2}\). So sánh hai trường hợp, ta có bộ số (x, y) để x + 2y đạt max là \(x=\frac{5+\sqrt{10}}{5};y=\frac{5+2\sqrt{10}}{5}\).
7 tháng 12 2020

Đặt \(S=x+2y\Rightarrow x=S-2y\)

Xét 2 trường hợp :

TH1: \(x^2+y^2>1\)từ giả thiết \(\Rightarrow x^2+y^2\le x+y\Leftrightarrow\left(S-2y\right)^2+y^2\le S-y\Rightarrow5y^2-\left(4S-1\right)y+S^2-S\le0\left(1\right)\)

Coi (1) là bất pt bậc 2 đối với ẩn y 

\(\Rightarrow\Delta=\left(4S-1\right)^2-20\left(S^2-S\right)\ge0\Rightarrow4S^2-12S-1\le0\Rightarrow S\le\frac{3+\sqrt{10}}{2}\)

Đẳng thức xảy ra khi \(x=\frac{5+\sqrt{10}}{2}\) thỏa mãn \(x^2+y^2>1\)

Vậy \(S_{m\text{ax}}=\frac{3+\sqrt{10}}{2}\)

TH2: Nếu \(x^2+y^2< 1\Rightarrow x+y\le x^2+y^2\)\(\Rightarrow S=x+2y\le x^2+y^2+y< 1+1=2\Rightarrow S< \frac{3+\sqrt{10}}{2}\)

Vậy S lớn nhất là \(\frac{3+\sqrt{10}}{2}\)khi \(x=\frac{5+2\sqrt{10}}{10};y=\frac{5+2\sqrt{10}}{10}\)

16 tháng 11 2017

TH 1: \(x^2+y^2< 1\)

\(\Rightarrow\hept{\begin{cases}|x|< 1\\|y|< 1\end{cases}}\)

\(\Rightarrow S=x+2y\le\sqrt{2\left(x^2+y^2\right)}+y< 1+\sqrt{2}\left(1\right)\)

TH 2: \(x^2+y^2>1\)

\(\Rightarrow x^2-x+y^2-y\le0\)

\(\Leftrightarrow\left(S-2y\right)^2-\left(S-2y\right)+y^2-y\le0\)

\(\Leftrightarrow5y^2+\left(1-4S\right)y+S^2-S\le0\)

\(\Rightarrow\Delta=\left(1-4S\right)^2-4.5.\left(S^2-S\right)\ge0\)

\(\Leftrightarrow S\le\frac{5+\sqrt{10}}{2}\left(2\right)\)

Từ (1) và (2) suy ra được GTLN của S

PS: S là đặt cho nó gọn nhé

18 tháng 8 2023

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)

Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)

\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)

\(\Leftrightarrow4\ge2+xy\)

\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)

\(\Leftrightarrow Max\left(xy\right)=2\)

Dấu "=" xảy ra khi

\(xy\in\left\{-1;1;-2;2\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài

17 tháng 9 2023

hình như dấu "=" xảy ra khi x^2 = 1/x^2 với x^2 = y^2/4 mà bạn nhỉ

NV
17 tháng 8 2021

\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)

Đặt \(\dfrac{x}{y}=a\Rightarrow0< a\le\dfrac{1}{4}\)

\(P=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{2x}{y}+2}{\dfrac{x}{y}+1}=\dfrac{a^2-2a+2}{a+1}=\dfrac{4a^2-8a+8}{4\left(a+1\right)}=\dfrac{4a^2-13a+3+5\left(a+1\right)}{4\left(a+1\right)}\)

\(P=\dfrac{5}{4}+\dfrac{\left(1-4a\right)\left(3-a\right)}{4\left(a+1\right)}\ge\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(a=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

NV
20 tháng 3 2021

\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\Rightarrow\dfrac{y}{x}\ge4\)

\(P=\dfrac{1-\dfrac{2y}{x}+2\left(\dfrac{y}{x}\right)^2}{1+\dfrac{y}{x}}\)

Đặt \(\dfrac{y}{x}=a\ge4\Rightarrow P=\dfrac{2a^2-2a+1}{a+1}=2a-4+\dfrac{5}{a+1}\)

\(P=\dfrac{a+1}{5}+\dfrac{5}{a+1}+\dfrac{9}{5}.a-\dfrac{21}{5}\ge2\sqrt{\dfrac{5\left(a+1\right)}{5\left(a+1\right)}}+\dfrac{9}{5}.4-\dfrac{21}{5}=5\)

Dấu "=" xảy ra khi \(a=4\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

20 tháng 3 2021

Nguyễn Việt Lâm Giáo viên làm thế nào để có thể nghĩ được ra như vậy?